Press Release

Printed Solid-State Batteries

Printable, high-performance solid-state electrolyte films for next generation Lithium batteries.

FOR IMMEDIATE RELEASE  November 18, 2020

CONTACT:
Katie Doyle
301 405 0379
khollan3@umd.edu

press release image

The printing and sintering process for solid-state electrolyte thin film synthesis. Photo credit: Liangbing Hu’s Group, University of Maryland, College Park.

Lithium-ion batteries are widely used in portable electronic devices, electric vehicles, and grid-scale energy storage systems. Safety of the Li-ion batteries, however, has been called into question repeatedly over the past several years due to the conventional organic electrolyte causing fire and explosion in many cases. Ceramic solid-state electrolyte (SSE) thin film promises a viable solution to addressing the safety issue by blocking the lithium (Li) dendrite that causes the short circuit and thermal runaway, meanwhile offering high energy density for next generation Li-ion batteries. However, current SSE thin films have low ionic conductivities, ranging from 108 to 105 S/cm, which can be attributed to poor material quality.

A research team led by Liangbing Hu at the University of Maryland (UMD) College Park recently developed a new method of printing and sintering a variety of SSE thin films. This work, entitled, “Printable, high-performance solid-state electrolyte films,” was published on November 18, 2020, in Science Advances. The team named this method 'printing and radiative heating' (PRH), which features a solution-based printable technique followed by rapid sintering.

In a typical process, a precursor suspension is printed on a substrate, whose concentration and thickness can be adjusted. The high-quality and high-performance SSE thin film can then be obtained after rapid (~3 s) high-temperature (~1500°C) sintering, ensuring minimal Li loss and high crystallinity. This approach not only leads to dense and uniform microstructure for the SSE thin films, but also ensures superior ionic conductivity. Notably, the fabrication process – from precursor to final product – only takes ~5 min, which is ~100 times faster than conventional methods.

In a proof-of-concept demonstration, the team showed a printed garnet-based SSE thin film to have high ionic conductivity of up to 1 mS/cm and excellent cycling stability. In addition, the PRH method enables many other designs such as complex multilayer assembly without cross-contamination during synthesis. It can also be extended to preparing other ceramic thin films, which opens up new opportunities in developing safe and high-performance solid-state batteries and other thin-film-based devices.

For additional information:

Ping, W., Wang, C., Wang, R., Dong, Q., Lin, Z., Brozena, A.H., Dai, J., Luo, J. and Hu, L. (2020). Printable, high-performance solid-state electrolyte films, 6, eabc8641, 2020, Science Advances. DOI: 10.1126/sciadv.abc8641.

About the A. James Clark School of Engineering

The University of Maryland’s A. James Clark School of Engineering is a premier program, ranked among the top 20 in the world. Located just a few miles from Washington, D.C., the Clark School is at the center of a constellation of high-tech companies and federal laboratories, offering students and faculty access to unique professional opportunities.

Our broad spectrum of academic programs, including the world’s only accredited undergraduate fire protection engineering program, is complemented by a vibrant entrepreneurial ecosystem, early hands-on educational experiences, and participation in national and international competitions.

The Clark School is leading research advancements in aerospace, bioengineering, robotics, nanotechnology, disaster resilience, energy and sustainability, and cybersecurity. From the universal product code to satellite radio, SMS text messaging to the implantable insulin pump, our students, faculty, and alumni are engineering life-changing innovations for millions. Learn more at www.eng.umd.edu.