1) Consider the signal \(x(t) = A \text{sinc}(4f_0 t) \):

 a) Sketch \(x(t) \) for the range \([-1/f_0, +1/f_0]\).

 b) Compute its Fourier Transform \(X(j\omega) \). **Hint** There is a hard way to do it, and an easy way to do it.

 c) Sketch \(X(j\omega) \) for the range \([-8\pi f_0, +8\pi f_0]\)

2) Compute the Fourier Transform \(X(j\omega) \) for:

 a) \(x(t) = 3\sin(2\pi t/5) \)

 b) \(x(t) = 3\sin(2\pi t/5) + 1 \)

3) For each of these functions, plot it for the range \([-2T_1, +2T_1]\) and compute its Fourier Transform. Use the properties of the Fourier Transform to simplify the calculation whenever possible.

 a) \(x_a(t) = t [u(t + T_1/2) - u(t - T_1/2)] \)

 b) \(x_b(t) = \frac{1}{2} [u(\frac{t}{2} + T_1/2) - u(\frac{t}{2} - T_1/2)] \)

 c) \(x_c(t) = t [u(t) - u(t - T_1)] \)

 d) \(x_d(t) = (-t) [u(-t) - u(-t - T_1)] \)

 e) \(x_e(t) = t [u(t + T_1) - u(t)] \)

 f) \(x_f(t) = x_e(t) + x_c(t) \)

 g) \(x_g(t) = x_e(t + T_1) - x_e(t - T_1) \)

4) As done in class and in the text, \(x(t) = u(t)e^{-at} \) has the Fourier Transform \(X(j\omega) = 1/(a + j\omega) \) for \(a > 0 \).

 a) Calculate the Fourier Transform of \(\frac{dx}{dt} \), entirely in the Fourier Domain (i.e. starting from \(X(j\omega) \)).

 b) Calculate \(\frac{dx}{dt} \) in the time domain.

 c) Calculate the Fourier Transform of \(\frac{dx}{dt} \) calculated in (b) using the standard equation.
d) Show that the answers to (a) and (c) are equal.

5) The amplitude modulation of a carrier signal with frequency \(f_c = \frac{\omega_c}{2\pi} \), by a (positive) signal \(x(t) \), is given by \(y(t) = x(t)\cos(\omega_c t) \). Calculate its Fourier Transform \(Y(j\omega) \), in terms of \(X(j\omega) \) the Fourier Transform of \(x(t) \). Optional: Interpret the Fourier Transform \(Y(j\omega) \) in terms of \(x(t) \) or \(X(j\omega) \) and \(\omega_c \).

6) Consider the following spatial impulse responses \(h(s) \). For each case, plot \(h(s) \) for the range \([-6/a, +6/a]\). Compute its Fourier Transform \(H(j\omega) \). Is it low pass, band pass, or high pass? Recall that \(f(|s|) = u(s)f(s) + u(-s)f(-s) \) for any signal \(f(s) \).
 a) \(h(s) = e^{-as} \), for \(a > 0 \).
 b) \(h(s) = as e^{-as} \), for \(a > 0 \).

7) Compute the Fourier Transforms of the following expressions, by any means, and simplify
 a) \(\cos(\omega_0 t) * u(t) \)
 b) \(\cos(\omega_0 t) \cdot (u(t)e^{-at}) \)
 c) \(u(t)e^{j\omega_0 t} \)
 d) \((u(t)e^{j\omega_0 t}) * (u(t)e^{-at}) \)