Important Attach a hardcopy of all MATLAB code.

1) As done in class, the zero-DC square wave function, with period \(T = 1 \), is

\[
x(t) = -\frac{1}{2} + u(t + \frac{1}{4}) - u(t - \frac{1}{4}) \quad \text{for} \ |t| < \frac{1}{2},
\]

extended periodically. Its Fourier expansion,

\[
x(t) = \sum_{k=-\infty}^{\infty} a_k e^{2\pi jkt} \quad [\text{since the fundamental frequency} \ \omega_0 = 2\pi \ (\text{why}?)]
\]
determines the Fourier series \(a_k \).

Consider the \(N \)th approximation to its Fourier expansion, \(x_N(t) = \sum_{k=-N}^{N} a_k e^{2\pi jkt} \):

a) By hand, plot \(x(t) \) for more than one period, around \(t = 0 \), and evaluate the maximum, minimum and mean.

b) Either by calculating directly, or by using your class notes for \(a_k \), simplify its Fourier series \(a_k \) using \(T = 1 \) and \(\omega_0 = 2\pi \).

c) Using MATLAB, plot \(x_N(t) \) for \(N = 4 \) over the same range as (a). Estimate the maximum, minimum and mean. The plot should resemble the plot in (a)—how good is it?

d) Repeat (c) for \(N = 16 \).

e) Repeat (c) for \(N = 128 \).

Optional Hint Because \(x(t) \) is even, real, and has zero DC, the calculation may be simplified by using

\[
a_k e^{2\pi jkt} + a_{-k} e^{-2\pi jkt} = a_k \left(e^{2\pi jkt} + e^{-2\pi jkt} \right) = 2a_k \cos(2\pi kt),
\]
giving \(x_N(t) = \sum_{k=1}^{N} 2a_k \cos(2\pi kt) \) allowing you to avoid complex numbers in your program.

2) Consider the discrete periodic signal \(x[n] = 1 + \sin(2\pi \frac{n}{8}) \):

a) Plot \(x[n] \) for the range \([0,7]\).

b) Compute its Fourier series coefficients \(a_k \) for the ranges of \(k : [0,7], [-3,4], \) and \([8,15]\).

c) Use MATLAB to help solve this problem. Use the following commands:

```matlab
n = [0:7];
x = 1+sin(2*pi*n/8);
A = fft(x)
```
How is \(A \) related to \(a_k \)? There may be an overall constant factor disagreement. When comparing the elements of the array \(A \) to \(a_k \), which value of \(k \) corresponds to the first element of \(A \) (i.e., \(A(1) \))?

3) Consider the RLC circuit pictured in Figure P3.20 (page 254) in Oppenheim & Willsky, except that R, L, and C are unknown (i.e. keep them as “R”, “L”, and “C”).
 a) Using an input signal of \(V_0 \exp(j\omega t) \), and knowing that because the RLC circuit is an LTI system the output signal will be \(H(j\omega)V_0\exp(j\omega t) \), derive an expression for the transfer function \(H(j\omega) \).
 b) For the values of R, L, and C in the book \((R = 1\Omega, L = 1H, C = 1F) \), calculate \(|H(j\omega)| \): the magnitude of \(H(j\omega) \). Sketch it (by hand) for \(0 \leq \omega < 3 \) (i.e. Make sure the beginning and end values are right and get the general trend in between). Is this a low-pass, band-pass, or high-pass filter?

4) For each of the following signals \(x(t) \), where \(a \) and \(L \) are unknown constants, sketch the signal and compute its Fourier Transform \(X(j\omega) \):
 a) \(x(t) = a(u(t) - u(t - L)) \)
 b) \(x(t) = a(u(t + L) - u(t)) \)
 c) \(x(t) = a(u(t + L/2) - u(t - L/2)) \)
 d) \(x(t) = au(t + L) + au(t + L/2) - au(t - L/2) - au(t - L) \)

Note For the next problem, you may find this relation useful:
\[
\int_{-\infty}^{\infty} \exp(jbx)\exp(-a^2x^2)dx = 2\int_{0}^{\infty} \cos(bx)\exp(-a^2x^2)dx = \frac{\sqrt{\pi}}{a} \exp(-b^2/4a^2)
\]

5) Consider the Gaussian signal \(x(t) = \exp\left(-t^2/2\sigma^2\right) \). [\(\sigma^2 \) is called the variance and parameterizes the width of the bell curve.]
 a) Sketch \(x(t) \) for the range \([-2, +2]\) if \(\sigma = 2 \).
 b) Compute its Fourier Transform \(X(j\omega) \).
 c) How does \(|X(j\omega)| \) fall off as \(|\omega| \to \infty \)?
 d) Where is the maximum of \(|X(j\omega)| \)? How would this change if the signal was modified to be the related signal \(x(t) = \exp(j\omega_0t - t^2/2\sigma^2) \)?