All plots should be done by hand, not by computer (a calculator, if needed, is OK).

1) Consider the continuous signals \(x(s) = \max(\sin(2\pi s), 0) \) and \(y(s) = \min(\sin(2\pi s), 0) \)

where \(\max(a, b) = \begin{cases} a & a \geq b \\ b & a < b \end{cases} \) and \(\min(a, b) = \begin{cases} b & a \geq b \\ a & a < b \end{cases} \).

a) Is \(x(s) \) periodic? If so, compute the fundamental period.

b) Is \(y(s) \) periodic? If so, compute the fundamental period.

c) Consider the signal \((x(s) - y(s))\). Is it periodic? If so, compute the fundamental period, and reconcile your answer with the answers to (a) and (b).

2) Consider the discrete signals \(x[n] = \begin{cases} 0 & \text{for } n \text{ even} \\ 1 & \text{for } n \text{ odd} \end{cases} \) and \(y[n] = \sin(n) \).

a) Is \(x[n] \) periodic? If so, compute the fundamental period.

b) Is \(y[n] \) periodic? If so, compute the fundamental period.

3) For each of the following continuous signals \(x(t) \), compute, \(\text{Ev}\{x(t)\} \) i.e. the even part of \(x(t) \), and \(\text{Od}\{x(t)\} \), i.e. the odd part of \(x(t) \).

a) \(x(t) = Ce^{j\omega_o t} \), where \(C = e^{j\pi/2} \).

b) \(x(t) = \frac{1}{1 + 2t} \).

c) \(x(t) = 2 \).

4) Consider the continuous signal \(x(t) = Ce^{j\omega_o t} \)

a) For \(C = \frac{1 + j}{\sqrt{2}} = e^{j\pi/4} \), \(\omega_o = \frac{4}{5} \pi \), on separate graphs, plot \(\text{Re}(x(t)) \) and \(\text{Im}(x(t)) \) in the range \([-3, +3]\), and compute the fundamental period of \(x(t) \).

b) For \(C = 1.5 \text{Volts}, \omega_o = 2\pi f_0, f_0 = 2 \text{kHz} \), on separate graphs, plot \(\text{Re}(x(t)) \) and \(\text{Im}(x(t)) \) in the range \([-1 \text{ms}, +1 \text{ms}]\), and compute the fundamental period of \(x(t) \) (with the correct units).

5) Consider the continuous signal \(x(t) = Ce^{\alpha t} \), where \(C = \sqrt{2} \left(1 + j\right) = 2e^{j\pi/4}, \alpha = 1 + 2\pi j \).

a) Plot \(|x(t)|\) and \(-|x(t)|\) and \(\text{Re}(x(t))\), on the same graph, in the range \([-2, +2]\).
b) Plot \(|x(t)|\) and \(-|x(t)|\) and \(\text{Im}(x(t))\), on the same graph, in the range \([-2, +2]\).

6) Consider the discrete signal: \(x[n] = C\alpha^n\).
 a) Plot \(x[n]\) in the range \([-2, +2]\), for \(C = 3, \alpha = 2\).
 b) Plot \(x[n]\) in the range \([-2, +2]\), for \(C = 3, \alpha = 2^{-1}\).
 c) Plot \(x[n]\) in the range \([-2, +2]\), for \(C = 3, \alpha = -2\).
 d) Plot \(x[n]\) in the range \([-2, +2]\), for \(C = -3, \alpha = 2\).

7) Consider a discrete signal \(x[n] = Ce^{j\omega_0 n}\) which is periodic with \(N = 6\).
 a) List the allowed values of \(\omega_0\) in the range \([0, 2\pi]\).
 b) List the allowed values of \(\omega_0\) in the range \([-\pi, +\pi]\).

8) Consider the following systems, where \(x \rightarrow \text{[System]} \rightarrow y\)
 a) \(y(t) = \cosh(x(t)) = \frac{1}{2}(e^{x(t)} + e^{-x(t)})\)
 b) \(y[n] = \text{Run}_{\rightarrow}(x[n]) = \sum_{n=\rightarrow}^{n} x[n']\)
 c) \(y[n] = |x[n+1] - x[n]|\)
 d) \(\frac{d}{dt}y(t) + \omega y(t) = \omega^2 tx(t)\)
 i) Which of the systems (a-c) are instantaneous/ultralocal/memoryless?
 ii) Which of the systems (a-d) are invertible?
 iii) Which of the systems (a-c) are causal?

 iv) In a few words and/or equations, explain why system (a) is or isn’t instantaneous/ultralocal/memoryless
 v) In a few words and/or equations, explain why system (b) is or isn’t instantaneous/ultralocal/memoryless
 vi) In a few words and/or equations, explain why system (a) is or isn’t instantaneous/ultralocal/memoryless
 vii) In a few words and/or equations, explain why system (b) is or isn’t instantaneous/ultralocal/memoryless
 viii) In a few words and/or equations, explain why system (a) is or isn’t invertible
 ix) In a few words and/or equations, explain why system (b) is or isn’t invertible
 x) In a few words and/or equations, explain why system (c) is or isn’t invertible
 xi) In a few words and/or equations, explain why system (d) is or isn’t invertible
 xii) In a few words and/or equations, explain why system (b) is or isn’t causal
 xiii) In a few words and/or equations, explain why system (c) is or isn’t causal