CURRICULUM VITAE

Jeffery B. Klauda

Notarization. I have read the following and certify that this curriculum vitae is a current and accurate statement of my professional record.

Signature: Date: 7/13/2020

I. Personal Information

Jeffery B. Klauda

Department of Chemical and Biomolecular Engineering

Associate Chair and Graduate Director in ChBE (July 2015-current)

Co-Graduate Director in Biophysics (August 2020-current)

Associate Professor (July 2014-current)

Assistant Professor (August 2007-June 2014)

Biophysics Program (July 2014-current)

Education/Employment

University or Institute	Location	Dates	Degree/Appointment	Research Advisor
Rensselaer Polytechnic Institute	Troy, NY	1994- 1998	B.S. Chemical Eng.	Prof. Michael Abbott
Rensselaer Polytechnic Institute	Troy, NY	1994- 1998	B.S. Applied Mathematics	
University of Delaware	Newark, DE	1998- 2003	Ph.D. Chemical Eng.	Prof. Stanley Sandler (NAE)
National Institutes of Health	Bethesda, MD	2003- 2007	Post-doctoral Fellow	Dr. Bernard Brooks

II. Research, Scholarly, Creative, and/or Professional Activities

II.B. Chapters

- II.B.1 Invited and Refereed Chapters in Books.
 - 1. **Klauda, J.B.,** R.M. Venable, A.D. MacKerell, & R.W. Pastor. Consideration for Lipid Force Field Development. *Curr. Top. In Memb.: Computational Modeling of Membrane Bilayers.* **60**, 1-48 (2008). (Cit.=60)
 - 2. Jo, S., E. L. Wu, D. Stuhlsatz, **J. B. Klauda**, A. D. MacKerell, G. Widmalm, and W. Im. Lipopolysaccharide Membrane Building and Simulation. In *Glycoinformatics: Methods in Molecular Biology*. J. M. Walker, editor. Springer Science, New York. **1273**: 391-406 (2015).
 - 3. Khakbaz, P.[‡], V. Monje-Galvan[‡], X. Zhuang[‡] and **J.B. Klauda***. Modeling Lipid Membranes. In *Biogenesis of Fatty Acids, Lipids and Membranes, Handbook of*

- *Hydrocarbon and Lipid Microbiology*. O. Geiger, editor. Springer International Publishing, **p. 1-19** (2017).
- 4. Jarboe, L.R., **J.B. Klauda**, Y. Chen, K.M. Davis, and M.C. Santoscoy. Engineering the Microbial Cell Membrane to Improve Bioproduction. In *Green Polymer Chemistry: New Products, Processes, and Application ACS Symposium Series*. H.N. Cheng, R.A. Gross and P.B. Smith, editors. American Chemical Society, **p 25-39** (2018).
- 5. Monje-Galvan, V., [‡] L.M. Warburton, [†] and **J.B. Klauda**. Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers. In *Intracellular Lipid Transport*. *Methods in Molecular Biology*. G. Drin, editor, Humana Press: New York, NY. Vol 1949 **p 325-339** (2019).

II.C. Refereed Journals

II.C.1 Referred Journal Articles

Listed chronologically below are articles which I am an author. My name is bolded for clarity and followed by an * when I am the corresponding author. Research based on work at the University of Maryland is delineated by a section title. Researchers in my lab are denoted as follows: ohigh school, †undergraduate, ‡graduate, and postdoctoral. All contain citations per article shown in **red** as of June 18, 2020 based on the Web of Science database (except overall citations were updated July 10, 2020). Also shown in the table below is a list of journals that I have published, their InCites Impact factor for 2018, and quartile list with grouping when appropriate (based on field that I publish in).

Journal	Impact	Quartile	# of	#
	Factor		pubs	invited
Chemical Reviews	54.3	Q1	1	1
Journal of the American Chemical Society	14.7	Q1	1	0
Proceedings of the National Academy of				
Sciences (USA)	9.58	Q1	1	0
ACS Applied Materials & Interfaces	8.456	Q1	1	0
Metabolic Engineering	7.808	Q1	1	0
Nanoscale	6.97	Q1	1	0
Journal of Chemical Theory and Computation	5.313	Q1	7	0
Journal of Molecular Biology	5.067	Q1	4	0
Analyst	4.019	Q1	1	0
		Q1-Chem.		
Journal of Chemical Information and Modeling	3.966	Medicinal	2	0
Biochimica et Biophysica Acta-Biomembranes	3.79	Q1-Biophys	8	2
Marine and Petroleum Geology	3.538	Q1	1	0
Industrial & Engineering Chemistry Research	3.375	Q1	3	0
Chemical Engineering Science	3.372	Q1	1	0
Journal of Physical Chemistry C	4.309	Q2	2	0
Faraday Discussions	3.861	Q2	1	0
Journal of Structural Biology	3.754	Q2	1	0
Langmuir	3.683	Q2	2	0
Biophysical Journal	3.665	Q2	15	0

Journal of Computational Chemistry	3.224	Q2	3	0
Energy & Fuels	3.021	Q2-Chem. Eng.	1	0
Journal of Chemical Physics	2.997	Q2	5	1
Biochemistry	2.952	Q2	2	0
Journal of Physical Chemistry B	2.923	Q2	33	0
Journal of Physical Chemistry A	2.6417	Q2	1	0
Macromolecular Chemistry and Physics	2.622	Q2	1	0
Chemistry and Physics of Lipids	2.536	Q2-Biophys	1	1
Fluid Phase Equilibria	2.514	Q2-Chem. Eng.	1	0
Living Journal of Computational Molecular				
Science	New	N/A	1	1
Proteins-Structure Function and Bioinformatics	2.501	Q3	1	0
Molecular Simulation	1.782	Q3	3	0

InCites Web of Science Publication Metrics (as of June 18, 2020)

InCites Web of Science Publication Metrics (as of July 10, 2020)

	All	without self
Citations	6,880	6,279
Citing Articles	4,355	4,257
h-index	34	

Google Scholar Publication Metrics (as of July 10, 2020)

	All	Since 2015
Citations	9,967	6,961
h-index		33
i10-index [†]	81	73

[†]i10-index being the number of papers with 10 or more citations

Publication List (Cite=Total Citations based on the Web of Science as of June 18, 2020)

- 1. **Klauda, J. B.** & S.I. Sandler. A Fugacity Model for Gas Hydrate Phase Equilibria. *Industrial & Engineering Chemistry Research.* **39**, 3377-3386 (2000). **(Cit.=171)**
- 2. **Klauda, J. B.** & S.I. Sandler. Modeling Gas Hydrate Phase Equilibria in Laboratory and Natural Porous Media. *Industrial & Engineering Chemistry Research.* **40**, 4197-4208 (2001). **(Cit.=62)**
- 3. **Klauda, J. B.** & S.I. Sandler. Ab Initio Intermolecular Potentials for Gas Hydrates and Their Predictions. *Journal of Physical Chemistry B.* **106**, 5722-5732 (2002). (Cit.=63)
- 4. **Klauda, J. B.** & S.I. Sandler. Phase Behavior of Clathrate Hydrates: A Model for Single and Multiple Gas Component Hydrates. *Chemical Engineering Science*. **58**, 27-41 (2003). (Cit.=122)
- 5. Jiang, J., **J.B. Klauda**, & S.I. Sandler. Monte Carlo Simulation of O₂ and N₂ Adsorption in Nanoporous Carbon (C₁₆₈ Schwarzite). *Langmuir*. **19**, 3512-3518 (2003). (Cit.=37)
- 6. **Klauda, J. B.** & S.I. Sandler. Predictions of Gas Hydrate Phase Equilibria and Amounts in Natural Sediment Porous Media. *Marine Petroleum Geology*. **20**, 459-470 (2003). (Cit.=50)
- 7. **Klauda, J.B.**, S.L. Garrison, G. Arora, J. Jiang, & S.I. Sandler. HM-IE: A Quantum Chemical Hybrid Method for Accurate Interaction Energies. *Journal of Physical Chemistry A.* **108**, 107-112 (2004). (Cit.=39)
- 8. **Klauda**, **J.B.**, J. Jiang, & S.I. Sandler. An Ab Initio Study on the Effect of Carbon Surface Curvature and Ring Structure on N₂(O₂)-Carbon Intermolecular Potentials. *Journal of Physical Chemistry B.* **108**, 9842-9851 (2004). (Cit.=32)
- 9. Jiang, J., **J.B. Klauda**, & S.I. Sandler. Hierarchical Modeling Gas Adsorption in the C₁₆₈ Schwarzite: From Quantum Mechanics to Molecular Simulation. *Journal of Physical Chemistry B.* **108**, 9852-9860 (2004). (Cit.=16)
- 10. Arora, G., **J.B. Klauda**, & S.I. Sandler. A Comparative Study of Nitrogen Physisorption on Different C₇₀ Crystal Structures Using an Ab Initio Based Potential. *Journal of Physical Chemistry B.* **109**, 17267-17273 (2005). (Cit.=4)
- 11. Jiang, J., **J.B. Klauda**, & S.I. Sandler. Hierarchical Modeling N₂ Adsorption on the Outer Surface of and within a C₆₀ Crystal: From Quantum Mechanics to Molecular Simulation. *Journal of Physical Chemistry B.* **109**, 4731-4737 (2005). (Cit.=16)
- 12. **Klauda, J. B.** & S.I. Sandler. Global Distribution of Methane Hydrate in Ocean Sediment. *Energy & Fuels.* **19**, 469-470 (2005). (Cit.=282)
- 13. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. Adjacent Gauche Stabilization in Linear Alkanes: Implications for Lipid/Polymer Models. *Journal of Physical Chemistry B.* **109**, 15684-15686 (2005). (Cit.=47)
- 14. **Klauda**, **J.B**., B.R. Brooks, A.D. MacKerell, R.M. Venable, & R.W. Pastor. An Ab Initio Study on the Torsional Surface of Alkanes and its Effect on Molecular Simulations of Alkanes and DPPC Bilayers. *Journal of Physical Chemistry B.* **109**, 5300-5311 (2005). (Cit.=250)

- 15. **Klauda, J.B.**, N. Kučerka, B.R. Brooks, R.W. Pastor, & J.F. Nagle. Simulation-based Methods for Interpreting X-ray Data from Lipid Bilayers. *Biophysical J.* **90**, 2796-2807 (2006). (Cit.=167)
- 16. **Klauda, J.B.**, B.R. Brooks, & R.W. Pastor. Dynamical Motions of Lipids and a Finite Size Effect in Simulations of Bilayers. *Journal of Chemical Physics*. **125**, 144710 (2006). (Cit.=99)
- 17. **Klauda, J.B.**, X. Wu, R.W. Pastor, & B.R. Brooks. Long-range Lennard-Jones and Electrostatic Interactions in Interfaces: Application of the Isotropic Periodic Sum Method. *Journal of Physical Chemistry B.* **111**, 4393-43400 (2007). (Cit.=65)
- 18. **Klauda, J.B.*** & B.R. Brooks. Sugar Binding in Lactose Permease: Anomeric State of a Disaccharide Influences Binding Structure. *Journal of Molecular Biology.* **367**, 1523-1534 (2007). (Cit.=28)
- 19. **Klauda, J.B.**, N.V. Eldho, K. Gawrisch, B.R. Brooks, & R.W. Pastor. Collective and Noncollective Models of NMR Relaxation in Lipid Vesicles and Multilayers. *Journal of Physical Chemistry B.* **112**, 5924-5929 (2008). (Cit.=29)
- 20. **Klauda, J.B.*** & B.R. Brooks. CHARMM Force Field Parameters for Nitroalkanes and Nitroarenes. *Journal of Chemical Theory and Computation*. **4**, 107-115 (2008). (Cit.=10)
- 21. **Klauda, J.B.,** M.F. Roberts, A.G. Redfield, B.R. Brooks, & R.W. Pastor. Rotation of Lipids in Membranes: MD Simulation, ³¹P Spin-Lattice Relaxation, and Rigid-Body Dynamics. *Biophysical J.* **94**, 3074-3083 (2008). (Cit.=67)
- 22. Miller, T., R.P. Singh, **J.B. Klauda**, M. Hodošček, B.R. Brooks, & H.L. Woodcock III. CHARMMing: A New, Flexible, Web-based front-end to CHARMM. *Journal of Chemical Information and Modeling*. **48**, 1920-1929 (2008). (Cit.=85)

Articles Published or Submitted Based on Work at UMD

- 23. Singh, R.P., B.R. Brooks, & **J.B. Klauda***. Binding and Release of Cholesterol in the Osh4 Protein of Yeast. *Proteins: Structure, Function, and Bioinformatics*. **75**, 468-477 (2009). (Cit.=23)
- 24. Jo, S.H., J.B. Lim[†], **J.B. Klauda**, & W. Im. CHARMM-GUI Membrane Builder for Mixed Bilayers and Its Application to Yeast Membranes. *Biophysical Journal.* **97**, 50-58 (2009). (Cit.=594)
- 25. **Klauda, J.B.**, R.M. Venable, J.A. Freites, J.W. O'Connor[†], D.J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A.D. MacKerell, Jr., & R.W. Pastor. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. *Journal of Physical Chemistry B.* **114**, 7830-7843 (2010). (Cit.=1795)
- 26. Jo, S.H., H. Rui, J.B. Lim[†], **J.B. Klauda**, & W. Im. Cholesterol Flip-Flop: Insights from Free Energy Simulation Studies. *Journal of Physical Chemistry B.* **114**, 13342-13348 (2010). (Cit.=81)

- 27. Pendse, P.Y.[‡], B.R. Brooks & **J.B. Klauda***. Probing the Periplasmic-open State of Lactose Permease in Response to Sugar Binding and Proton Translocation. *Journal of Molecular Biology.* **404**, 506-521 (2010). (Cit.=24)
- 28. Rogaski, B. [‡], J.B. Lim[†], & **J.B. Klauda***. Sterol Binding and Membrane Lipid Attachment to the Osh4 Protein of Yeast, Osh4. *Journal of Physical Chemistry B.* **114**, 13562-13573 (2010). (Cit.=4)
- 29. Bandyopadhyay, A.A. † & **J.B. Klauda***. Gas Hydrate Structure and Pressure Predictions based on an Updated Fugacity-based Model with the PSRK Equation of State. *Industrial & Engineering Chemistry Research.* **50**, 148-147 (2011). (Cit.=29)
- 30. Lim, J.B. † & **J.B. Klauda***. Lipid chain branching at the Iso- and Anteiso-Positions in Complex Chlamydia Membranes: A Molecular Dynamics Study. *Biochimica et Biophysica Acta-Biomembranes*. **1808**, 323-331 (2011). (Cit.=31)
- 31. Song, K.C., P.W. Livanec, **J.B. Klauda**, K. Kuczera, R.C. Dunn, & W. Im. Orientation of Fluorescent Lipid Analog BODIPY-PC to Probe Lipid Membrane Properties: Insights from Molecular Dynamics Simulations. *Journal of Physical Chemistry B.* **115**, 6157-5165 (2011). (Cit.=22)
- 32. O'Connor, J.W[†] & **J.B. Klauda**^{*}. Lipid Membranes with a Majority of Cholesterol: Applications to the Ocular Lens and Aquaporin 0. *Journal of Physical Chemistry B*. **115**, 6455-5464 (2011). (Cit.=35)
- 33. Lim, J.B.[†], B. Rogaski[‡] & **J.B. Klauda**^{*}. Update of the Cholesterol Force Field Parameters in CHARMM. *Journal of Physical Chemistry B.* **116**, 203-210 (2012). (Cit.=115)
- 34. Pandit, K.R. * & **J.B. Klauda***. Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. *Biochimica et Biophysica Acta-Biomembranes*. **1818**, 1205-1210. (2012). (Cit.=51)
- 35. Kwon, T.K., B. Roux, SW Jo, **J.B. Klauda**, A.L. Harris, & T.A. Bargiello. Molecular Dynamics Simulations of the Cx26 Hemichannel: Insights into voltage-dependent loopgating. *Biophysical J.* **102**, 1341-1351 (2012). (Cit.=28)
- 36. Ezzeldin, H.M., **J.B. Klauda**, & S.D. Solares. Modeling of the Major Gas Vesicle Protein, GvpA: from Protein Sequence to Vesicle Wall Structure. *Journal of Structural Biology.* **179**, 18-28 (2012). (Cit.=8)
- 37. **Klauda, J.B.***, V. Monje,† T. Kim, and W. Im. Improving the CHARMM Force Field for Polyunsaturated Fatty Acid Chains. *Journal of Physical Chemistry B.* **116**, 9424-9431 (2012). (Cit.=76)
- 38. Rogaski, B[‡] & **J.B. Klauda***. Membrane-binding Mechanism of a Peripheral Membrane Protein through Microsecond Molecular Dynamics Simulations. *Journal of Molecular Biology.* **423**, 847-861 (2012). (Cit.=21)
- 39. Cheng, X., S.H. Jo, **J.B. Klauda**, and W. Im. CHARMM-GUI Micelle Builder for Pure/Mixed Micelle and Protein/Micelle Complex Systems. *Journal of Chemical Information and Modeling*. **53**, 2171-2180 (2013). (Cit.=45)

- 40. Wu, E.L., O. Engström, S. Jo, D, Stuhlsatz, MS Yeom, **J.B. Klauda**, G. Widmalm, and W. Im. Molecular Dynamics and NMR Spectroscopy Studies of E. coli Lipopolysaccharide Structure and Dynamics. *Biophysical J.* **105**, 1444-1455 (2013). (Cit.=89)
- 41. Villanueva, D.Y., J.B. Lim, & **J.B. Klauda**. Influence of Ester-modified Lipids on Bilayer Structure. *Langmuir.* **29**, 14196-14203 (2013). (Cit.=11)
- 42. Subramanian, D., C.T. Boughter[†], **J.B. Klauda**, B. Hammouda, and M.A. Anisimov. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules. *Faraday Discuss.* **167**: 217-238 (2013). (Cit.=55)

Articles Published Based on Post-tenure Work at UMD

- 43. Lee, S., † A. Tran, † M. Allsopp, † J.B. Lim, † J. Hénin, & **J.B. Klauda***. CHARMM36 United-Atom Chain Model for Lipids and Surfactants. *Journal of Physical Chemistry B*. **118**: 547-556 (2014). (Cit.=56)
- 44. Jeong, J.C., S. Jo, E.L. Wu, Y. Qi, V. Monje, M.S. Yeom, L. Gorenstein, F. Chen, J.B. Klauda, & W. Im. ST-analyzer: A Web-based User Interface for Simulation Trajectory Analysis. *Journal of Computational Chemistry*. 35: 957-963 (2014). (Cit.=8)
- 45. Wu, E.L., P.J. Fleming, M.S. Yeom, G. Widmalm, **J.B. Klauda**, K.G. Fleming & W. Im. E. coli Outer Membrane and Interactions with OmpLA. *Biophysical J.* **106**: 2493–2502 (2014). (Cit.=75)
- 46. Wu, E.L., Y. Qi, K.C. Song, **J.B. Klauda**, & W. Im. Preferred Orientations of Phosphoinositides in Bilayers and Their Implications in Protein Recognition Mechanisms. *Journal of Physical Chemistry B.* **118**: 4315-4325 (2014). (Cit.=17)
- 47. Subramanian, D. **J.B. Klauda**, and M.A. Anisimov. Mesoscale Phenomena in Ternary Solutions of Tertiary Butyl Alcohol, Water, and Propylene Oxide. *Journal of Physical Chemistry B.* **118**: 5994-6006 (2014). (Cit.=27)
- 48. Zhuang, X., [‡] J.R. Makover, [†] W. Im, & **J.B. Klauda**. A Systematic Molecular Dynamics Simulation Study of Temperature Dependent Bilayer Structural Properties. *Biochimica et Biophysica Acta-Biomembranes*. **1838**: 2520-2529 (2014). (Cit.=42)
- 49. Venable, R.M., A.J. Sodt, B. Rogaski, H. Rui, E. Hatcher, A.D. MacKerell, Jr., R.W. Pastor, and **J.B. Klauda***. CHARMM All-Atom Additive Force Field for Sphingomyelin: Elucidation of Hydrogen Bonding and of Positive Curvature. *Biophysical J.* **107**: 134-145 (2014). (Cit.=91)
- 50. Wu, E., X. Cheng, S. Jo, H. Rui, K.C. Song, E.M. Dávila-Contreras, Y. Qi, J. Lee, V. Monje-Galvan,[‡] R.M. Venable, **J.B. Klauda**, and W. Im. CHARMM-GUI Membrane Builder Toward Realistic Biological Membrane Simulations. *Journal of Computational Chemistry*. **35**: 1997-2004 (2014). (Cit.=521)
- 51. Kern, N.R, H.S. Lee, E.L. Wu, K. Vanommeslaeghe, A.D MacKerell, Jr., **J.B. Klauda**, S. Jo, and W. Im. Lipid-Linked Oligosaccharides in Membranes Sample Conformations

- that Facilitate Binding to Oligosaccharyltransferase. *Biophysical J.* **107**: 1885-1895 (2014). (Cit.=11)
- 52. Kang, H[†] & **J.B. Klauda**^{*}. Molecular Dynamics Simulations of Palmitoyloleoyl-phosphatidylglycerol Bilayers. *Molecular Simulation*. **41**: 948-954 (2015). (Cit.=5)
- 53. Park, S., A.H. Beaven, **J.B. Klauda** and W. Im. How Tolerant are Membrane Simulations with Mismatch in Area per Lipid between Leaflets? *Journal of Chemical Theory and Computation*. **11**: 3466-3477 (2015). (Cit.=28)
- 54. Khakbaz, P.[‡] and **J.B. Klauda***. Probing the Importance of Lipid Diversity in Cell Membranes via Molecular Simulation. *Chemical Physics of Lipids*. **192**: 12-22 (2015). **Invited** (Cit.=29)
- 55. Konas, R.M.,[†] J.L. Daristotle,[†] N.B. Harbor,[†] and **J.B. Klauda***. Biophysical Changes of Lipid Membranes in the Presence of Ethanol at Varying Concentrations. *Journal of Physical Chemistry B.* **119**: 13134-13141 (2015). (Cit.=13)
- 56. Qi, Y., X. Cheng, J. Lee, J. Vermaas, T.V. Pogorelov, E. Tajkhorshid, S. Park, **J.B. Klauda**, and Wonpil Im. CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. *Biophysical Journal*. **109**: 2012-2022 (2015). (Cit.=35)
- 57. Monje-Galvan, V.[‡] and **J.B. Klauda***. Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties. *Biochemistry*. **54**: 6852-6861 (2015). (Cit.=22)
- 58. Wu, E., Y. Qi, S. Park, S.S. Mallajosyula, A.D. MacKerell, Jr., **J.B. Klauda**, and W. Im. Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein. *Biophysical J.* **109**: 2090-2100 (2015). (Cit.=12)
- 59. MacDermaid, C.M., H.K. Kashyap, R.H. DeVane, W. Shinoda, **J.B. Klauda**, M.L. Klein, and G. Fiorin. Molecular Dynamics Simulations of Cholesterol-rich Membranes using a Coarse-grained Force Field for Cyclic Alkanes. *Journal of Chemical Physics*. **143**, 243144 (2015). (Cit.=24)
- 60. Lee, J., X. Cheng, J. Swails, M.S. Yeom, P. Eastman, J. Lemkul, S. Wei, J. Buckner, J.C. Jeong, Y. Qi, S. Jo, V.S. Pande, D.A. Case, C.L. Brooks III, A.D. MacKerell Jr, **J.B. Klauda**, and W. Im CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations using the CHARMM36 Additive Force Field. *Journal of Chemical Theory and Computation*. **12**, 405-413 (2016). (Cit.=421)
- 61. Choudhary, R.[‡] and **J.B. Klauda***. The Simultaneous Mass and Energy Evaporation (SM2E) Model. *Journal of Occupational & Environmental Hygiene*. **13**, 247-257 (2016). (Cit.=1)
- 62. Monje-Galvan, V.[‡] and **J.B. Klauda***. Peripheral Membrane Proteins: Tying the Knot between Experiment and Computation. *Biochimica et Biophysica Acta-Biomembranes*. **1858**, 1584-1593 (2016) **Invited**. (Cit.=17)

- 63. Zhuang, X., [‡] and **J.B. Klauda***. Modeling Structural Transitions from the Periplasmic-open State of Lactose Permease and Interpretations of Spin Label Experiments. *Biochimica et Biophysica Acta-Biomembranes*. **1858**, 1541-1552 (2016). (Cit.=4)
- 64. Kim, S., D. Patel, S. Park, J. Slusky, **J.B. Klauda**, G. Widmalm, and W. Im. Bilayer Properties of Lipid A from Various Gram-negative Bacteria. *Biophysical Journal.* **111**, 1750-1760 (2016). (Cit.=29)
- 65. Barton, R. P. Khakbaz,[‡] I. Bera, J.B. Klauda, M.K. Iovine, and B.W. Berger. Interplay of specific trans- and juxtamembrane interfaces in Plexin A3 dimerization and signal transduction. *Biochemistry*. **55**, 4928-4938 (2016).
- 66. Adhikari, A., S. Re, W. Nishima, M. Ahmed, S. Nihonyanagi, **J.B. Klauda**, Y. Sugita, and T. Tahra. Water Orientation at Ceramide / Water Interfaces Studied by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulation. *Journal of Physical Chemistry C.* **120**, 23692-23697 (2016). (Cit.=10)
- 67. Zhuang, X,[‡] E.M. Dávila-Contreras, A.H. Beaven, W. Im, and **J.B. Klauda***, An Extensive Simulation Study of Lipid Bilayer Properties with Different Head Groups, Acyl Chain Lengths, and Chain Saturations. *Biochimica et Biophysica Acta-Biomembranes*. **1858**, 3093-3104 (2016). (Cit.=15)
- 68. Qi, Y., **J.B. Klauda** and W. Im. Effects of Spin-labels on Membrane Burial Depth of MARCKS-ED Residues. *Biophysical Journal.* **111**, 1600-1603 (2016).
- 69. Patel, D.S., S. Park, E.L. Wu, M.S. Yeom, G. Widmalm, **J.B. Klauda*** and W. Im. Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature. *Biophysical Journal.* **111**, 1987-1999 (2016). (Cit.=17)
- 70. Boughter, C.T.,[†] V. Monje-Galvan[‡], W. Im and **J.B. Klauda***. Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics. *Journal of Physical Chemistry B.* **120**, 11761-11772 (2016). (Cit.=25)
- 71. Jo, S., X. Cheng, J. Lee, S. Kim, S.-J. Park, D.S. Patel, A.H. Beaven, K.I. Lee, H. Rui, B. Roux, A.D. MacKerell, Jr., **J.B. Klauda**, Y.. Qi, and W. Im. CHARMM-GUI 10 Years for Biomolecular Modeling and Simulation. *Journal of Chemical Theory and Computation*. **38**, 1114-1124 (2017). (Cit.=48)
- 72. Bera, I. and **J.B. Klauda***. Molecular Simulations of Mixed Lipid Bilayers with Sphingomyelin, Glycerophospholipids and Cholesterol. *Journal of Physical Chemistry B.* **121**, 5197-5208 (2017). (Cit.=22)
- 73. Wang, E.[†] and **J.B. Klauda***. Examination of Mixtures Containing Sphingomyelin and Cholesterol by Molecular Dynamics Simulations. *Journal of Physical Chemistry B.* **121**, 4833-4844 (2017). (Cit.=23)
- 74. Zhuang, X,[‡] A. Ou,^o and **J.B. Klauda***. Simulations of simple Linoleic acid-containing Lipid Membranes and Models for the Soybean Plasma Membranes. *Journal of Chemical Physics.* **146**, 215103 (2017). (Cit.=8)
- 75. Monje-Galvan, V.[‡] and **J.B. Klauda***. Two sterols, two bilayers: insights on membrane structure from molecular dynamics. *Molecular Simulation*. **43**, 1179-1188 (2017). (Cit.=2)

- 76. Novikov, A.A., A.P. Semenov, V. Monje-Galvan,[‡] V.N. Kuryakov, **J.B. Klauda**, and M.A. Anisimov. Dual Action of Hydrotropes at the Water/Oil Interface. *Journal of Physical Chemistry C.* **121**, 16423-16431 (2017). (Cit.=8)
- 77. Tan, Z., P. Khakbaz,[‡] Y. Chen, J. Lombardo, J.M. Yoon, J.V. Shanks, **J.B. Klauda**, and L.R. Jarboe. Engineering *Escherichia coli* Membrane Phospholipid Head Distribution Improves Tolerance and Production of Biorenewables. *Metabolic Engineering*. **44**, 1-12 (2017). (Cit.=31)
- 78. Wang, E.[†] and **J.B. Klauda***. Molecular Dynamics Simulations of Ceramide and Ceramide-Phosphatidylcholine Bilayer Mixtures. *Journal of Physical Chemistry B.* **121**, 10091-10104 (2017). (Cit.=15)
- 79. Leonard, A.N.,[‡] A.C. Simmonett, F.C. Pickard, IV, J. Huang, R.M. Venable, **J.B. Klauda**, B.R. Brooks, and R.W. Pastor. Comparison of Additive and Polarizable Models with Explicit Treatment of Long-Range Lennard-Jones Interactions Using Alkane Simulations. *Journal of Chemical Theory Computation*. **14**, 948-958 (2018). (Cit.=17)
- 80. Wang, E.[†] and **J.B. Klauda***. Simulations of Pure Ceramide and Ternary Lipid Mixtures as Simple Interior *Stratum Corneum* Models. *Journal of Physical Chemistry B.* **122**, 2757-2768 (2018). (Cit.=10)
- 81. Gavrilenko, L[†] and **J.B. Klauda***. Aggregation of Modified Hexabenzocoronenes as Models for early-stage Asphaltene Self-Assembly. *Molecular Simulation*. **44**, 992-1003 (2018). (Cit.=1)
- 82. Khakbaz, P. [‡] and **J.B. Klauda***. Investigation of Phase Transitions of Saturated Phosphocholine Lipid Bilayers via Molecular Dynamics Simulations. *Biochimica et Biophysica Acta-Biomembranes.* **1860**, 1489-1501 (2018). (Cit.=11)
- 83. Leonard, A.N.,[‡] R.W. Pastor, and **J.B. Klauda***. Parameterization of the CHARMM All-Atom Force Field for Ether Lipids and Model Linear Ethers. *Journal of Physical Chemistry B.* **122**, 6744-6754 (2018). (Cit.=6)
- 84. Adams, M.[†] E. Wang[†], X. Zhuang[‡] and **J.B. Klauda***. Simulations of Simple Bovine and Homo sapiens Outer Cortex Ocular Lens Membrane Models with a Majority Concentration of Cholesterol. *Biochimica et Biophysica Acta-Biomembranes*. **1860**: 2134-2144 (2018). **Invited** (Cit.=6)
- 85. Bera, I. and **J.B. Klauda***. Structural events in a bacterial uniporter leading to translocation of glucose to the cytosol. *Journal of Molecular Biology*. **430**, 3337-3352 (2018). (Cit.=6)
- 86. Guros, N.B.,[‡] A. Balijepalli, and **J.B. Klauda***. The Role of Lipid Interactions in Accurate Simulations of the *alpha-hemolysin* Transporter. *Biophysical Journal*. **115**, 1720-1730 (2018). (Cit.=4)
- 87. Monje-Galvan, V.[‡] and **J.B. Klauda***. Preferred binding mechanism of Osh4's ALPS motif, insights from molecular dynamics. *Journal of Physical Chemistry B.* **122**, 9713-9723 (2018). (Cit.=2)
- 88. Yu, Y.[‡] and **J.B. Klauda***. Modeling Pseudomonas Aeruginosa Inner Plasma Membrane in Planktonic and Biofilm Modes. *Journal of Chemical Physics*. **149**, 215102 (2018).

- 89. **J.B. Klauda***. Perspective: Computational Modelling of Accurate Cellular Membranes with Molecular Resolution. *Journal of Chemical Physics*. **149**, 220901 (2018). **Invited-Perspectives Article (Cit.=3)**
- 90. Wang, E.[†] and **J.B. Klauda***. Models for the Stratum Corneum Lipid Matrix: Effects of Ceramide Concentration, Ceramide Hydroxylation, and Free Fatty Acid Protonation. *Journal of Physical Chemistry B.* **122**, 11996-12008 (2018). (Cit.=3)
- 91. Smith, D.J., **J.B. Klauda***, A.J. Sodt. Simulation Best Practices for Lipid Membranes: v1.0. *Living Journal of Computational Molecular Science*. **1**, 5966 (2019). **Invited**
- 92. Qi, Y., J. Lee, **J.B. Klauda**, and W. Im. CHARMM-GUI Nanodisc Builder for Modeling and Simulation of Various Nanodisc Systems. *Journal of Computational Chemistry.* **40**, 893-899 (2019). (Cit.=6)
- 93. Lee, J., D.S. Patel, J. Ståhle, S.-J. Park, N.R. Kern, S. Kim, J. Lee, X. Cheng, M.A. Valvano, O. Holst, Y.A. Knirel, Y. Qi, S. Jo, **J.B. Klauda**, G. Widmalmn and W. Im. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. *Journal of Chemical Theory and Computation*. **15**, 775-786 (2018). (Cit.=17)
- 94. Basu, S., R.M. Venable, B. Rice, E. Ogharandunkun, **J.B. Klauda**, R.W. Pastor, P.L. Chandran. Mannobiose-grafting shifts PEI charge and biphasic dependence on pH. *Macromolecular Chemistry and Physics*. **220**, 1800423 (2019). (Cit.=2)
- 95. Wildermuth, K.D.,[†] V. Monje-Galvan[‡], L.M. Warburton,[†] and **J.B. Klauda***. Effect of membrane lipid packing on stable binding of the ALPS peptide. *Journal of Chemical Theory and Computation*. **15**, 1418-1429 (2019). (Cit.=2)
- 96. A.N. Leonard,[‡] **J.B. Klauda**, * and S. Sukharev. Isothermal Titration Calorimetry of Be²⁺ with Phosphatidylserine Models Guides All-Atom Force Field Development for Lipid-Ion Interactions. *Journal of Physical Chemistry B.* **123**, 1554-1565 (2019).
- 97. Wang, E.[†] and **J.B. Klauda***. Structure and Permeability of Ceramide Bilayers and Multilayers. *Journal of Physical Chemistry B.* **123**, 2525-2535 (2019). (Cit.=3)
- 98. Hughes, A.V., D.S. Patel, G. Widmalm, **J.B. Klauda**, L.A. Clifton, and W. Im. Physical Properties of Gram-negative Bacterial Outer Membranes: Neutron Reflectometry and Molecular Simulation. *Biophysical Journal* **116**, 1095-1104 (2019). (Cit.=2)
- 99. Leonard, A.N.,[‡] E. Wang,[†] V. Monje-Galvan[‡] and **J.B. Klauda***. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. *Chemical Reviews.* **119**, 6227-6269 (2019). **Invited (Cit.=13)**
- 100. Guros, N.B, [‡] S.T. Le, S. Zhang, B.A. Sperling, **J.B. Klauda**, C.A. Richter, A. Balijepalli. Reproducible Performance Improvements to Monolayer MoS₂ Transistors through Exposed Material Forming Gas Annealing. *ACS Applied Materials & Interfaces*. **11**, 16683-16692 (2019). (Cit.=4)
- 101. Wong, S,[†] J. Condon,[†] E.L. Eckersley, B.W. Berger^{*}, and **J.B. Klauda**^{*}. Probing the pH effects on Sugar Binding to a Polysaccharide Lyase. *Journal of Physical Chemistry B*. **123**, 7123-7136 (2019).

- 102.Lee, S.T., N.B. Guros,[‡] R.C. Bruce, A. Cardone, N.D. Amin, S. Zhang, **J.B. Klauda**, H.C. Pant, C.A. Richter, A. Balijepalli. Quantum Capacitance-limited MoS₂ Biosensors Enable Label-Free Enzyme Measurements. *Nanoscale*. **11**: 15622-15632 (2019). (Cit.=2)
- 103. Wang, E.[†] and **J.B. Klauda***. Molecular Structure of the Long Periodicity Phase in the Stratum Corneum. *Journal of the American Chemical Society*. **141**: 16930-16943 (2019). (Cit.=1)
- 104.Guros, N.B, [‡] A. Balijepalli, and **J.B. Klauda***. Microsecond Timescale Simulations Demonstrate 5-HT mediated Pre-activation of the 5-HT_{3A} Serotonin Receptor. *Proceedings of the National Academy of Sciences. U.S.A.* **117**: 405-414 (2020). (Cit.=1)
- 105. West, A., V. Zoni, W.E. Teague, A.N. Leonard, S. Vanni, K. Gawrisch, S. Tristram-Nagle. J.N. Sachs, **J.B. Klauda***. How do Ethanolamine Plasmalogens Contribute to Order and Structure of Neurological Membranes? *Journal of Physical Chemistry B.* **124**: 828-839 (2020).
- 106. Son, T.L., M.A. Morris, A. Cardone, N.B. Guros, J.B. Klauda, B.A. Sperling, C.A. Richter, H.C. Plant and A. Balijepalli. Rapid, Quantitative Therapeutic Screening for Alzheimer's Enzymes Enabled by Optimal Signal Transduction with Transistors. *Analyst.* 145: 2925-2936 (2020).
- 107.Monje-Galvan, V.[‡] and **J.B. Klauda***. Interfacial Properties of Aqueous Solutions of Butanol Isomers and Cyclohexane. *Fluid Phase Equilibria*. **513**: 112551 (2020).
- 108.Yu, Y. [‡] and **J.B. Klauda***. Update of the CHARMM36 United Atom Chain Model for Hydrocarbons and Phospholipids. *Journal of Physical Chemistry B.* **124**: 6797-6812 (2020).
- 109.Krämer, A, A. Ghysels, E. Wang,[†] R.M. Venable, **J.B. Klauda**, B.R. Brooks, and R.W. Pastor. Membrane Permeability of Small Molecules from Unbiased Molecular Dynamics Simulations. *Journal of Chemical Physics.* **153**: 124107 (2020).
- 110. Ghorbani, M.,[‡] E. Wang,[†] A. Krämer, and **J.B. Klauda**^{*}. Molecular Dynamics Simulations of Ethanol Permeation through Single and Double-Lipid Bilayers. *Journal of Chemical Physics*. **153**: 125101 (2020).
- 111.Ghorbani, M.,[‡] B.R. Brooks, and **J.B. Klauda**. Critical Sequence Hot-spots for Binding of nCOV-2019 to ACE2 as Evaluated by Molecular Simulations. *Journal of Physical Chemistry B.* **124**: 10034–10047 (2020).
- 112.Ghorbani, M.,[‡] B.R. Brooks, and **J.B. Klauda**. Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. *Biophysical Journal*. **Submitted** (2020).
- 113.Allsopp, R.J.[‡] and **J.B. Klauda**. Impact of PIP2 Lipids and Force Field Parameters on the Binding of Osh4's α₆-α₇ Domain. *Journal of Physical Chemistry B*. **Submitted** (2020).
- 114.Olondo Kuba, J.,[†] Y. Yu,[‡] and **J.B. Klauda**. Estimating Localization of Various Statins within a POPC Bilayer. *Chemistry and Physics of Lipids*. **Submitted** (2020).

115.Gao, Y., J. Lee, I.P.S. Smith, H. Lee, S. Kim, Y. Qi, **J.B. Klauda**, G. Widmalm, S. Khalid, and W. Im. CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in LPS. *Journal of Chemical Information and Modeling*. **Submitted** (2021).

<u>II.E.</u> Conferences, Workshops and Talks.

II.E.2 Invited Talks

Listed below are invited talks with a title to delineate talks given after starting at UMD.

- 1. "Phase Behavior of Gas Hydrates and Global Predictions for Methane Hydrate Seafloor Reserves" *The University of Melbourne*—Department of Chemical & Biomolecular Engineering (2003).
- 2. "Structure of Lipid Membranes and Improving the Head Group Force Field" *eChemInfo*, Philadelphia (2005).
- 3. "Structure, Dynamics, and Small Molecule Transport through Cell Membranes: How can Simulations Aid Experiments?" *University of Kentucky*, Lexington (2007).
- 4. "Structure, Dynamics, and Small Molecule Transport through Cell Membranes: How can Simulations Aid Experiments?" *University of Pennsylvania*, Philadelphia (2007).
- 5. "Structure, Dynamics, and Small Molecule Transport through Cell Membranes: How can Simulations Aid Experiments?" *University of South Carolina*, Columbia (2007).
- 6. "Structure, Dynamics, and Small Molecule Transport through Cell Membranes: How can Simulations Aid Experiments?" *University of Maryland*, College Park (2007).
- 7. "Pure Lipid Membranes and Active Transport of Sugars through the Cytoplasmic Membrane via Lactose Permease" *Biological Membranes: Emerging Challenges at the Interface between Theory, Computer Simulation, and Experiment*, Park City, UT (2007).

Invited talks when at UMD

Talks to National and International Universities

- 8. "Structure and Dynamics of Lipids, Model Cellular Membranes, and Membrane Proteins", *University of Kansas*, Center for Bioinformatics, Lawrence (2008).
- 9. "Understanding the Structure and Dynamics of Biomembranes and Their Components", *National Taiwan University*, Department of Chemical Engineering, Taipei (2009).
- 10. "Model Biomembranes of Single-Celled Organisms and a Protein that Controls Substrate Transport in *E. coli*", *Advanced Materials Research*, Central Michigan University, Mt. Pleasant, MI (2010).
- 11. "Multi-scale Modeling of Gas Hydrates Reserves in the Seafloor Sediment", *Petroleum Institute*, Department of Chemical Engineering, Abu Dhabi, UAE (2011).
- 12. "Molecular Modeling of Cellular Membranes and Associated Proteins", *University of Maryland*, Special Joint ChBE/Chemistry & Biochemistry Seminar (2011).

- 13. "Modeling Bacterial Membrane Structure to Membrane Protein Dynamics at an Atomic Level", *University of Virginia*, Department of Chemical Engineering (2011).
- 14. "Modeling Plasma Membranes and Proteins that Transport Small Molecules and Membrane Components", *Georgia Institute of Technology*, Department of Chemical and Biomolecular Engineering (2013).
- 15. "Modeling Plasma Membranes and Proteins that Transport Small Molecules and Membrane Components", *Temple University*, Institute for Computational Molecular Science (2013).
- 16. "E. coli Plasma Membrane Modeling and Membrane-associated Transport Proteins", University of Maryland, Department of Bioengineering (2013).
- 17. "Force Field Development and Molecular Simulations of Model Lipid Membranes" Satellite Meeting of ICMS2013. *Nagoya University*, Japan (2013).
- 18. "Molecular Simulations of Pore-forming Membranes and Membrane-associated Proteins" *Rensselaer Polytechnic Institute*, Department of Chemical and Biological Engineering (2014).
- 19. "Simulations of Cell Membranes: Developing Accurate Lipid Force Fields and Probing Conformational Changes in Membrane Transporters" *University of Maryland*, Biophysics Program (2014).
- 20. "Probing Small Molecule Self-assembly, Lipid Membranes and Membrane-associated Proteins" *Lehigh University*, Department of Chemical and Biomolecular Engineering (2014).
- 21. "Molecular Simulations of Hydrotropes, Lipid Membranes and a Peripheral Membrane Protein" *West Virginia University*, Morgantown, WV (2015).
- 22. "The Influence of Alcohols on the Oil/Water Interface and Cell Membrane." *National Taiwan University*, Department of Chemical Engineering (2016).
- 23. "Molecular Modeling of a Curvature-Sensing Peptide and Structural Changes in a Secondary Active Transporter." *National Chiao Tung University*, Institute of Bioinformatics and Systems Biology (2016).
- 24. "Improving the Tolerance of Organisms to Biofuels and Intracellular Transport of Lipids." *North Carolina State University*, Department of Chemical Engineering, Raleigh, NC (2017).
- 25. "New Developments in the CHARMM Lipid Force Field and Applications to Membrane-associated Proteins" *University of Illinois at Urbana-Champaign*, Theoretical & Computational Biophysics Group, Urbana, IL (2018).
- 26. "Permeation of Membranes: Research on Improving the Tolerance of Organisms to Biofuels and Modeling the Skin Barrier." *Howard University*, Department of Chemical Engineering, Washington, DC (2018).
- 27. "Probing the Mechanism of a Peripheral Membrane Protein and Modeling the Skin Barrier." *University of Fribourg*, Department of Biology, Switzerland (2018).

28. "Modeling the Stratum Corneum and its Permeation and a Protein involved in Intracellular Lipid Transport" *University of New England*, Department of Pharmaceutical Sciences, Portland, ME (2019).

Talks to National and International Laboratories

- 29. "Improving the Lipid Force Field from ab Initio Methods and the Sugar Transporter of E. coli" *mini-Carbohydate Symposium*. National Institutes of Health, Bethesda (2008).
- 30. "Predicting the Locations and Amounts of Seafloor Methane Hydrates", *Central Geological Survey of Taiwan*, Taipei (2009).
- 31. "Molecular simulations of certain model human membranes and secondary active transport proteins" *National Institutes of Health*, NHLBI, Laboratory of Computational Biology (2011).
- 32. "All-atom Molecular Simulations to Probe Structure and Dynamics of Bacterial Membranes and Membrane-associated Proteins", *NIST Center for Neutron Research* (2012).
- 33. "Interpreting Experimental Studies of Self-Assembly and Transmembrane Proteins with Molecular Simulation", *National Institute of Standards and Technology*, Gaithersburg, MD, Software and Systems Division (2014).

Talks to National and International Conferences

- 34. "Gas Hydrates: A Significant but Relatively Untapped Alternate Source of Natural Gas", *National Capitol Section of AIChE*, College Park, MD (2009).
- 35. "Diversity of Lipids in Organisms and their Organelles: Is this Required to Accurately Model Real Membranes?", *Biological Membranes and Membrane Proteins*, Snowmass, CO (2011).
- 36. "Simulation Studies on Biological Membranes with High Performance Computing" Enabling Discovery with HPC, Baltimore, MD (2012).
- 37. "Modeling Lipid Bilayer and Microsecond Simulations of a Peripheral Membrane Protein", *Biological Membranes and Membrane Proteins*, Snowmass, CO (2013).
- 38. "Simulations of Biomembranes: Importance of Lipid Diversity and Structural Changes of Membrane Transport Proteins" *3rd International Conference on Molecular Simulation (ICMS)*. Kobe, Japan (2013).
- 39. "Probing the Transport Cycle of Secondary Active Transporters with Atomistic Simulations" *Computational Modeling Workshop and Mini-Symposium*. University of Chicago (2014).
- 40. "Molecular Modeling of Biomolecules: How can GPUs Advance Research?" *GPU Summit*, University of Maryland, Institute for Advanced Computing (2014).
- 41. "Binding of a Curvature-sensing Peptide to Model Organelle Membranes of Yeast", *Biological Membranes and Membrane Proteins*, Telluride, CO (2015)

- 42. "Developing Quantum Mechanically-based Force Field Parameters from Gas Hydrates to Biology", *AIChE Annual Meeting*, Prof. Sandler Symposium (2015).
- 43. "Modeling Yeast Organelle Membranes and a Curvature Sensing Peptide." 4th *International Conference on Molecular Simulation (ICMS)*. Shanghai, China (2016).
- 44. "Modeling Yeast Asymmetric Membranes and Dimerization of a Plexin Protein in the Membrane", *Biological Membranes and Membrane Proteins*, Santa Fe, NM (2017).
- 45. "Probing the Mechanism of a Peripheral Membrane Protein and Influence of the Lipid Environment on the Function of α-hemolysin" *Delaware Membrane Protein Symposium*, Newark, DE (2018).
- 46. "Studies of a Peripheral Membrane Protein in Yeast (Osh4) and its Peptide that Senses Lipid Packing" *ACS Spring National Meeting*, Orlando, FL (2019).
- 47. "Studies of a Peripheral Membrane Protein in Yeast that Exchanges Lipids at Membrane Contact Sites", 19th KIAS Conference on Protein Structure and Function, KIAS, Seoul, Korea (2019).
- 48. "Improving the CHARMM Force Field Parameters for Lipid-ion and Plasmalogen Lipids" *ACS Spring National Meeting*, Philadelphia, PA (2020).

II.E.3 Refereed Presentations

This section is divided into two sections with mentored presentations given by students a postdocs and presentations given by Dr. Klauda.

Mentored Conference Talks

- 1. Lim, J.B.[†] & **J.B. Klauda**. "The Application of Molecular Dynamics Simulations to Sterols and Lipid Bilayers" *UMD Bioscience Day* (2008).
- 2. Lim, J.B.[†], S. Jo, W. Im, & **J.B. Klauda** "Molecular Dynamics Simulations of Complex Mixed Lipid Bilayers to Model Yeast Membranes" *Chemistry and Biology Interface Symposium*, Baltimore (2009).
- 3. Pendse, P.Y.[‡] & **J.B. Klauda** "Structural Changes and Sugar Binding in Lactose Permease of *E. coli*" *Chemistry and Biology Interface Symposium*, Baltimore (2009).
- 4. Lim, J.B.[†] & **J.B. Klauda** "Molecular Dynamics Simulations of Complex Mixed Lipid Bilayers to Model Yeast Membranes" *ACS National Fall Meeting* (2009).
- 5. Pendse, P.Y.[‡] & **J.B. Klauda** "Structural Changes and Quantification of Ligand Affinity in Lactose Permease of Escherichia coli." *ACS National Fall Meeting* (2009).
- 6. Lim, J.B.[†] & **J.B. Klauda** "Molecular Dynamics Simulations of Complex Mixed Lipid Bilayers to Model Yeast Membranes" *AIChE Annual Meeting* (2009).
- 7. Pendse, P.Y.[‡] & **J.B. Klauda** "Structural Changes and Quantification of Ligand Binding Affinity in Membrane Transport Proteins." *AIChE Annual Meeting* (2009).
- 8. Pendse, P.Y.[‡], B.R. Brooks, & **J.B. Klauda**. "An Atomic-level Model for the Periplasmic Open State of Lactose Permease." *Biophysical Society* (2010).

- 9. Rogaski, B.[‡] & **J.B. Klauda**. "Binding of a Natural Sterol to the Osh4 Protein of Yeast and Membrane Attachment." *Biophysical Society* (2010).
- 10. Pendse, P.Y.[‡], B.R. Brooks, & **J.B. Klauda**. "An Atomic-level Model for the Periplasmic Open State of Lactose Permease." *Chemistry and Biology Interface Symposium*, Baltimore (2010).
- 11. Rogaski, B.[‡] & **J.B. Klauda**. "Binding of A Natural Sterol to the Osh4 Protein of Yeast and Membrane Attachment." *Chemistry and Biology Interface Symposium*, Baltimore (2010).
- 12. Noon, M.S.[†] & **J.B. Klauda**. "Structure Prediction of the Major Outer Membrane Protein of Chlamydia." *Chemistry and Biology Interface Symposium*, Baltimore (2010).
- 13. Lim, J.B.[†] & **J.B. Klauda**. "Branching at the Iso- and Anteiso- Positions in Complex Chlamydia Membranes: A Molecular Dynamics Study." *Chemistry and Biology Interface Symposium*, Baltimore (2010).
- 14. Pendse, P.Y.[‡] & **J.B. Klauda**. "Binding Free Energy Calculations to Understand the Mechanism of Sugar Binding to Lactose Permease of E. Coli." *AIChE Annual Meeting* (2010).
- 15. Rogaski, B.[‡] & **J.B. Klauda**. "PIP Binding and Membrane Attachment of a Protein Involved in Intracellular Transport of Sterols." *AIChE Annual Meeting* (2010).
- 16. Noon, M.S.[†] J.B. Lim[†], A.D.. MacKerell Jr., **J.B. Klauda**. "Structure Prediction and Simulations of the Major Outer Membrane Protein of Chlamydia." *Biophysical Society* (2011).
- 17. Rogaski, B.[‡] & **J.B. Klauda**. "Phosphoplipid Binding and Membrane Attachment of the Osh4 Protein." *Biophysical Society* (2011).
- 18. Pandit, K[‡] & **J.B. Klauda**. "*In Silico* Model *Escherichia Coli* Membranes: Simulating a Lipid with a Cyclopropane Ring." *Biophysical Society* (2011).
- 19. Pendse, P.Y[‡] & **J.B. Klauda**. "Mechanistic and Thermodyanmic Insights into the Transport Cycle of Lactose Permease." *Biophysical Society* (2011).
- 20. Villanueva, D.Y.[†] & **J.B. Klauda**. "Lipid Bilayers of Ester-modified Lipids." *Biophsyical Society* (2011).
- 21. Rogaski, B.[‡] & **J.B. Klauda**. "Phosphoplipid Binding and Membrane Attachment of the Osh4 Protein." *ACS Spring National Meeting* (2011).
- 22. Pendse, P.Y[‡] & **J.B. Klauda**. "Quantification of binding affinity in lactose permease of E. coli to understand the anomeric binding phenomenon." *ACS Spring National Meeting* (2011).
- 23. Pandit, K[‡] & **J.B. Klauda**. "*In Silico* Model *Escherichia Coli* Membranes: Simulating a Lipid with a Cyclopropane Ring." *AIChE Annual Meeting* (2011).
- 24. Pendse, P.Y.[‡] & **J.B. Klauda.** "Study of Ligand Binding Thermodynamics and Proton Translocation in Lactose Permease of Escherichia Coli." *ACS Spring National Meeting* (2012).

- 25. Pendse, P.Y.[‡] & **J.B. Klauda**. "Investigation of the Proton Translocation Mechanism in Lactose Permease of E. Coli by a Hybrid QM/MM Approach." *AIChE Annual Meeting* (2012).
- Monje, V.,[‡] T. Kim, W. Im, & J.B. Klauda. "Improved CHARMM Force Field for Polyunsaturated Fatty Acid Chains, A Study on DAPC Membranes" *Biophysical Society* (2013).
- 27. Monje, V., * & J.B. Klauda. "Simulation studies on organelle-specific yeast membrane models and amphipathic lipid packing sensor (ALPS) motif binding mechanism" *AIChE Annual Meeting* (2013).
- 28. Monje, V. [‡] & **J.B. Klauda**. "Molecular Dynamics of Yeast Membranes & Preliminary studies of ALPS-motif binding mechanism" *Biophysical Society* (2014).
- 29. Khakbaz, P. [‡] & **J.B. Klauda**. "Studying Conformational Changes of Mhp1 using Unbiased All-atom Molecular Simulations" *Biophysical Society* (2014).
- 30. Zhuang, X. [‡] J.R. Makover [†] & **J.B. Klauda**. "Temperature Dependence of Bilayer Structural Properties Studied with Molecular Dynamics Simulations" *Biophysical Society* (2014).
- 31. Monje, V.[‡] & **J.B. Klauda.** "Molecular dynamics of yeast membrane models and binding of the ALPS-like motif" *Computational/Theory Washington/Baltimore Symposium at NIH* (2014).
- 32. Khakbaz, P. [‡] & **J.B. Klauda**. "Studying Conformational Changes of Mhp1 Using All-atom Simulations." *Computational/Theory Washington/Baltimore Symposium at NIH* (2014).
- 33. Zhuang, X. [‡] J.R. Makover [†] & **J.B. Klauda**. "Investigating the accuracy of C36 for lipid at various temperatures." *Computational/Theory Washington/Baltimore Symposium at NIH* (2014).
- 34. Khakbaz, P. [‡] & **J.B. Klauda**. "Studying Conformational Changes of Mhp1 using Unbiased All-atom Molecular Simulations." *AIChE Annual Meeting* (2014).
- 35. Zhuang, X. [‡] & **J.B. Klauda**. "Molecular Dynamics Simulations on the Periplasmic-Open State Lactose Permease." *AIChE Annual Meeting* (2014).
- 36. Monje-Galvan, V.[‡] & **J.B. Klauda.** "Membrane Binding of the Osh4 Curvature-Sensing Peptide" *Ouitel Conference in Ecuador* (2014).
- 37. Konas, R.M.,[†] J.L. Daristotle,[†] N.B. Harbor[†] & **J.B. Klauda.** "How does Ethanol Affect the Stability of Simple Model Yeast Membranes?" *Biophysical Society* (2015).
- 38. Kang, H.[†] & **J.B. Klauda.** "Molecular Dynamics Simulations of Sphingomyelin-Cholesterol Bilayers." *Biophysical Society* (2015).
- 39. Boughter, C.T,[†] V. Monje-Galvan,[‡] & **J.B. Klauda.** "Influence of Cholesterol on Phospholipid Bilayer Dynamics." *Biophysical Society* (2015).
- 40. Zhuang, X. [‡] & **J.B. Klauda**. "Molecular Dynamics Simulations on the Periplasmic-Open State Lactose Permease." *Biophysical Society* (2015).

- 41. Khakbaz, P. [‡] & **J.B. Klauda**. "Investigating Lipid Phase Changes from Liquid Crystalline to Ripple to Gel Phases with All-atom Molecular Dynamics Simulations." *Biophysical Society* (2015).
- 42. Monje-Galvan, V.[‡] & **J.B. Klauda.** "Membrane Binding of the Osh4 Curvature-Sensing Peptide" *Biophysical Society* (2015).
- 43. Monje-Galvan, V.[‡] & **J.B. Klauda.** "Binding Studies of a *Saccharomyces Cerevisiae* Peripheral Protein Osh4" *ACS Spring National Meeting* (2015).
- 44. Zhuang, X. [‡] & **J.B. Klauda**. "Molecular Dynamics Simulations on the Periplasmic-Open State Lactose Permease." *ACS Spring National Meeting* (2015).
- 45. Khakbaz, P. [‡] & **J.B. Klauda**. "Investigating Lipid Phase Changes from Liquid Crystalline to Ripple to Gel Phases with All-atom Molecular Dynamics Simulations." *ACS Spring National Meeting* (2015).
- 46. Zhuang, X. [‡] & **J.B. Klauda**. "Molecular Dynamics Simulations on the Periplasmic-Open State Lactose Permease." *Delaware Membrane Protein Symposium* (2015).
- 47. Monje-Galvan, V.[‡] & **J.B. Klauda.** "Membrane Binding of the Osh4 Curvature-Sensing Peptide" *Delaware Membrane Protein Symposium* (2015).
- 48. Khakbaz, P. [‡] & **J.B. Klauda**. "Probing the Ripple Phase of Bilayers using Molecular Dynamics Simulations." *Biophysical Society* (2016).
- 49. Zhuang, X. [‡] & **J.B. Klauda**. "Probing Conformational Changes of Secondary Active Transporters." *Biophysical Society* (2016).
- 50. Guros, N., [‡] A. Balijepalli, & **J.B. Klauda**. "Characterizing Nanopore-Polymer and Cyc-loop Protein Receptor Gating." *Biophysical Society* (2016).
- 51. Monje-Galvan, V. * & **J.B. Klauda.** "Lo/Ld Phase Coexistence and Interaction in Model Membranes with IPC Lipids." *Biophysical Society* (2016).
- 52. Monje-Galvan, V.[‡] & **J.B. Klauda.** "Lo/Ld Phase Coexistence and Interaction in Model Membranes with IPC Lipids." *Delaware Membrane Protein Symposium* (2016).
- 53. Guros, N., [‡] A. Balijepalli, & **J.B. Klauda**. "Characterizing Nanopore-Polymer and Cyc-loop Protein Receptor Gating." *Delaware Membrane Protein Symposium* (2016).
- 54. Zhuang, X. ‡ & **J.B. Klauda**. "Probing Conformational Changes of Secondary Active Transporters." *Delaware Membrane Protein Symposium* (2016).
- 55. Khakbaz, P. [‡] & **J.B. Klauda**. "Probing the Ripple Phase of Bilayers using Molecular Dynamics Simulations." *Delaware Membrane Protein Symposium* (2016).
- 56. Zhuang, X. [‡] & **J.B. Klauda**. "Simulation study on the interpretations of spin label experiments and conformational changes of lactose permease." *4th International Conference on Molecular Simulation (ICMS)*. Shanghai, China (2016).
- 57. Guros, N. ‡ , A. Balijepalli, & **J.B. Klauda**. "Analyzing the Effects of Lipid Type on the α -Hemolysin Nanopore and 5HT3 Receptor Structure and Gating using

- Molecular Dynamics Simulations." 4th International Conference on Molecular Simulation (ICMS). Shanghai, China (2016). Poster Award Winner
- 58. Monje-Galvan, V. [‡] & **J.B. Klauda.** "Asymmetric membrane models for the PM and TGN of yeast, an all-atom molecular dynamics study." *Biophysical Society* (2017).
- 59. Guros, N. [‡], A. Balijepalli, & **J.B. Klauda**. "Analyzing the Effects of Lipid Type on the α-Hemolysin Nanopore and 5HT3 Receptor Structure and Gating using Molecular Dynamics Simulations." *Biophysical Society* (2017).
- 60. Khakbaz, P. [‡] & **J.B. Klauda**. "Simulations Provide Insight into Improving the Tolerance of the E. coli membrane." *Biophysical Society* (2017).
- 61. Leonard, A. [‡] & **J.B. Klauda**. "Modeling Ethers with Molecular Dynamics." *Biophysical Society* (2017).
- 62. Monje-Galvan, V. [‡] & **J.B. Klauda.** "Asymmetric membrane models for the PM and TGN of yeast, an all-atom molecular dynamics study." *Delaware Membrane Protein Symposium* (2017).
- 63. Guros, N. [‡], A. Balijepalli, & **J.B. Klauda**. "Analyzing the Effects of Lipid Type on the α-Hemolysin Nanopore and 5HT3 Receptor Structure and Gating using Molecular Dynamics Simulations." *Delaware Membrane Protein Symposium* (2017).
- 64. Leonard, A. [‡] & **J.B. Klauda**. "Modeling Ethers with Molecular Dynamics." *Delaware Membrane Protein Symposium* (2017).
- 65. Bera, I. & **J.B. Klauda**. "Studying conformational changes facilitating sugar transport in a semi-SWEET transporter." *Delaware Membrane Protein Symposium* (2017).
- 66. Wang, E.[†] & **J.B. Klauda**. "Examination of lipid bilayer mixtures containing sphingomyelin and cholesterol by molecular dynamics simulation." *American Chemical Society-Fall Meeting* (2017).
- 67. Bera, I. & **J.B. Klauda**. "All-atom simulation studies on lipid bilayers, composed of sphingomyelin, glycerophospholipids and cholesterol." *American Chemical Society-Fall Meeting* (2017).
- 68. Monje-Galvan, V. [‡] & **J.B. Klauda.** "Asymmetric models for the trans-Golgi Network and plasma membranes of S. cerevisiae, insights from molecular dynamics." *American Chemical Society-Fall Meeting* (2017).
- 69. Novikov, A.A., A.P. Semenov, V. Monje-Galvan, V.N. Kuryakov, **J.B. Klauda**, and M.A. Anisimov. "Interfacial behavior of hydrotropes in aqueous solutions" *American Chemical Society-Fall Meeting* (2017).
- 70. Leonard, A. [‡] & **J.B. Klauda**. "Isothermal Titration Calorimetry of Be2+ and Ca2+ with phosphatidylserine models guides all-atom force field development for lipid-ion interactions." *Biophysics Society* (2018).
- 71. Bera, I. & **J.B. Klauda**. "Structural events in a bacterial uniporter leading to translocation of glucose inside the cytosol." *Biophysics Society* (2018).

- 72. Guros, N.[‡], A. Balijepalli, & **J.B. Klauda**. "Analyzing the effects of membrane lipid type on transmembrane proteins (αHL and 5-HT3) using molecular dynamics simulations." *Biophysics Society* (2018).
- 73. Wang, E.[†] & **J.B. Klauda**. "Molecular dynamics simulations of stratum corneum model membranes." *Biophysics Society* (2018).
- 74. Leonard, A. [‡] & **J.B. Klauda**. "Isothermal Titration Calorimetry of Be2+ and Ca2+ with phosphatidylserine models guides all-atom force field development for lipid-ion interactions." *Delaware Membrane Protein Symposium* (2018).
- 75. Bera, I. & **J.B. Klauda**. "Structural events in a bacterial uniporter leading to translocation of glucose inside the cytosol." *Delaware Membrane Protein Symposium* (2018).
- 76. Guros, N.[‡], A. Balijepalli, & **J.B. Klauda**. "Analyzing the effects of membrane lipid type on transmembrane proteins (αHL and 5-HT3) using molecular dynamics simulations." *Delaware Membrane Protein Symposium* (2018).
- 77. Wang, E.[†] & **J.B. Klauda**. "Atomistic Models of the Lipid Matrix in the Stratum Corneum." *American Chemical Society-Fall Meeting* (2018).
- 78. Leonard, A. ‡ R.W. Pastor & **J.B. Klauda**. "Parameterization of the CHARMM Force Field for Ether Lipids and Model Linear Ethers." *Biophysics Society* (2019).
- 79. Ghorbani, M.,[‡] E. Wang[†] & **J.B. Klauda**. "Calculating Ethanol Permeability of Membranes through Molecular Dynamics Simulations." *Biophysics Society* (2019).
- 80. Guros, N., [‡] A. Balijepalli, & **J.B. Klauda**. "Microsecond-scale Molecular Dynamics Simulations Reveal Desensitized Behavior of 5HT3." *Biophysics Society* (2019).
- 81. Yu, Y. ‡ and **J.B. Klauda**. "Modeling *Pseudomonas aeruginosa* Inner Plasma Membrane in Planktonic and Biofilm Modes." *Biophysics Society* (2019).
- 82. Adhikari, S.,[‡] M. Ghorbani,[‡] K. Dura, **J.B. Klauda** & A.J. Karlsson. "Translocation of CPP-cargo Protein Fusions into *Candida Albicans* Cells and Designing for Enhanced Translocation with Simulations." *Biophysics Society* (2019).
- 83. Wang, E.[†] & **J.B. Klauda**. "Molecular Structure of the Long Periodicity Phase in the Stratum Corneum." *Biophysics Society* (2019).
- 84. Tammareddy, T., [‡] A. Cardone, S. Hassan, H. Pant, M. Brady, R. Sriram, & **J.B. Klauda.** Investigation of Allosteric Inhibition Mechanisms by the Peptide p6 on the Alzheimer's Disease (AD) Pathological Complex Cdk5-p26 through Molecular Dynamics Simulations. *Biophysics Society* (2020).
- 85. Ghorbani, M.,[‡] **J.B. Klauda** & B.R. Brooks. "Mechanism of Degradation of Histatin-5 Peptide by Secreted Aspartic Proteases (SAPS) of *C. albicans*." *Biophysics Society* (2020).
- 86. Yu, Y.[‡], A. Krämer, **J.B. Klauda** & R.W. Pastor. "Modifying the CHARMM36 Lipid Force field for LJ-PME Simulations." *Biophysics Society* (2020).

Conference Talks as Speaker

- 1. **Klauda, J.B.** & S.I. Sandler. "Predictions of Gas Hydrate Phase Equilibria in Laboratory and Natural Sediment Porous Media" *AIChE Annual Meeting* (2001).
- 2. **Klauda, J.B.** & S.I. Sandler. "Intermolecular Potentials for Gas-Hydrates Obtained from *Ab Initio* Quantum Mechanics" *ACS National Fall Meeting* (2002).
- 3. **Klauda, J.B.** & S.I. Sandler. "Phase Behavior of Clathrate Hydrates: A Model for Single and Multiple Gas Component Hydrates" *AIChE Annual Meeting* (2002).
- 4. **Klauda, J.B.** & S.I. Sandler. "Ab Initio Intermolecular Potentials of Absorbents in Nanoporous Carbon Schwartzite Structures" AIChE Annual Meeting (2002).
- 5. **Klauda, J.B.** & S.I. Sandler. "A Quantum Chemical Hybrid Method (HM-IE) for Calculating Interaction Energies Used to Develop Accurate Intermolecular Potentials" *AIChE Annual Meeting* (2003).
- 6. **Klauda, J.B.** & B.R. Brooks. "A Self-guided Langevin Dynamic Study of β-Hairpin Folding with Explicit Solvent: Computational Efficiency and Folding Pathways" *AIChE Annual Meeting* (2004).
- 7. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "An Ab Initio Study on the Torsional Surface of Alkanes and its Effect on Molecular Simulations of Alkanes and DPPC Bilayers" *AIChE Annual Meeting* (2004).
- 8. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "Lipid Bilayers: Structural and Dynamical Properties with an Improved Forcefield Fit to Ab Initio Quantum Mechanics" *Biophysical Society* (2005).
- 9. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "Refining the Structure of Lipid Bilayers with Insight from Molecular Dynamics Simulations" *ACS National Fall Meeting* (2005).
- 10. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "Structure and Dynamics of Lipid Membranes: How can Simulations Aid Experiments?" *AIChE Annual Meeting* (2005).
- 11. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "Importance of Including Long-range Interactions in Simulations of Biologically Relevant 2D Surfaces" *AIChE Annual Meeting* (2005).
- 12. **Klauda, J.B.** & B.R. Brooks. "Lactose Permease-Sugar Interactions: The Anomeric State of a Disaccharide Determines its Binding Structure" *Symposium of Protein Society* (2006).
- 13. **Klauda**, **J.B.** & B.R. Brooks. "Disaccharide Binding in Lactose Permease of E. coli: Sugar Structure Influences Binding" *AIChE Annual Meeting* (2006).
- 14. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "Dynamical Motions of Lipids and a Finite Size Effect of Bilayers" *AIChE Annual Meeting* (2006).
- 15. **Klauda**, **J.B.** & B.R. Brooks. "Structural Changes in Lactose Permease and How Sugar-Type Effects Binding Structure" *Biophysical Society* (2007).

Conference Talks as Faculty at UMD

- 16. **Klauda, J.B.** & B.R. Brooks. "Determining the Outward-Facing Structure and Sugar Binding in Lactose Permease of *E. coli*" *AIChE Annual Meeting* (2007).
- 17. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "Long-range Lennard-Jones and Electrostatic Interactions in Interfaces: Application and Development of the Isotropic Periodic Sum Method" *AIChE Annual Meeting* (2007).
- 18. **Klauda, J.B.**, R.P. Singh, & B.R. Brooks. "Binding and Release of Cholesterol in the Osh4 Protein of Yeast" *ACS National Fall Meeting* (2008).
- 19. **Klauda, J.B.**, R.P. Singh, & B.R. Brooks. "Binding and Release of Cholesterol in the Osh4 Protein of Yeast" *AIChE Annual Meeting* (2008).
- 20. **Klauda, J.B.**, P.Y. Pendse[‡], & B.R. Brooks. "An Atomic-level Model for the Periplasmic Open State of Lactose Permease" *Biophysical Society* (2009).
- 21. **Klauda, J.B**., R.W. Pastor, & B.R. Brooks. "Improving the lipid force field of CHARMM: A quantum mechanical and experimental approach" *ACS National Fall Meeting* (2009).
- 22. **Klauda, J.B.**, R.W. Pastor, & B.R. Brooks. "Improving the lipid force field of CHARMM: A quantum mechanical and experimental approach" *AIChE Annual Meeting* (2009).
- 23. **Klauda, J.B.**, J.B. Lim[†], R.M. Venable, & R.W. Pastor. "A Modified Lipid Force Field for CHARMM: Development and Application to Single-Celled Organism Membranes" *Biophysical Society* (2010).
- 24. Lim, J.B.[†] & **J.B. Klauda**. "Refining and Testing CHARMM Lipid Parameters for Biologically Important Membranes" *Biophysical Society* (2011).
- 25. Lim, J.B.[†], J.W. O'Connor[†] & **J.B. Klauda**. "Molecular simulations of model bacterial and ocular lens lipid membranes with the CHARMM36 force field" *ACS National Spring Meeting* (2011).
- 26. **Klauda**, **J.B.** "Gas hydrates: Where and how much is trapped in this alternative source of natural gas" *ACS National Spring Meeting* (2011).
- 27. **Klauda, J.B.** "New all-atom method to probe unknown conformations and substrate transport of secondary active membrane transport proteins" *ACS National Spring Meeting* (2011).
- 28. Rogaski, B.,[‡] V. Monje[†] & **Klauda, J.B.** "Extending the CHARMM Force Field to Sphingolipids and Lipids with Polyunsaturated Chains" *AIChE Annual Meeting* (2011).
- 29. Pendse, P.Y[‡] & **Klauda, J.B.** "Quantification of Sugar Binding Affinity and Study of Proton Translocation in Lactose Permease of *Escherichia Coli*" *AIChE Annual Spring Meeting* (2011).
- 30. Pendse, P.Y. [‡] K.R. Pandit, [‡] & **J.B. Klauda**. "Atomic-level Simulations to Probe Conformational Changes of Secondary Active Transport Proteins" *Biophysical Society* (2012).

- 31. Rogaski, B.[‡] & **J.B. Klauda**. "Osh4 Membrane Binding Through Molecular Dynamics" *Biophysical Society* (2012).
- 32. **J.B. Klauda** "Lipid Diversity: Is It Important in Modeling Organism and Organelle Membranes?" *AIChE Annual Meeting* (2012).
- 33. **J.B. Klauda** "Developing CHARMM-compatible Lipid Parameters for Ceramides and United Atom Chains" *Biophysical Society* (2013).
- 34. **J.B. Klauda** "What can we Learn From Microsecond Simulations of a Peripheral Membrane Protein of Yeast?" *ACS National Spring Meeting* (2013).
- 35. **J.B. Klauda.** "CHARMM-Compatible Lipid Parameters for Ceramides and United Atom Chains" *AIChE Annual Meeting* (2013).
- 36. Daristotle, J.L.,[†] R. Konas[†] & **J.B. Klauda**. "Probing the Toxicity of Ethanol to Biological Membranes with Application to Biofuels Production." *AIChE Annual Meeting* (2014).
- 37. Wong, S.Y.[†] & **J.B. Klauda**. "Probing the Dependence of pH on Sugar Binding and Protein Structure in a Polysaccharide Lyase." *Biophysical Society* (2015).
- 38. Khakbaz, P.,[‡] I. Bera, & **J.B. Klauda**. PlexinA3 Trans- and Juxtamembrane Dimer Helix Association. *Biophysical Society* (2016).
- 39. Zhuang, X.[‡], A. Oou^o, & **J.B. Klauda**. "Simulations of Linoleoyl-containing Pure Lipid Bilayer and Soybean Plasma Membranes." *Biophysical Society* (2017).
- 40. Khakbaz, P.,[‡] I. Bera, & **J.B. Klauda**. PROBING PLEXIN A3 DIMERIZATION AND THE IMPORTANCE OF THE NEAR MEMBRANE EXTRACELLULAR RESIDUES. *Biophysical Society* (2018).
- 41. Phakbaz, P.,[‡] & **J.B. Klauda**. Ripple and Gel Phases of Saturated Phosphocholine Bilayers Investigated with Simulations. *Biophysical Society* (2019).
- 42. Yu, Y.,[‡] & **J.B. Klauda**. Update of the CHARMM36 United Atom Chain Model for Lipids. *Biophysical Society* (2020).

II.E.14 Workshops

- 1. "Mechanisms for a novel pore-forming lipid and lipid binding to a peripheral membrane protein" *Workshop on Molecular Simulations of Biophysics and Biochemistry*. RIKEN AICS in Kobe, Japan (2013).
- 2. "Lipid Bilayer Simulations: Force fields, Simulation and Analysis" *Computational Modeling Workshop and Mini-Symposium*. University of Chicago (2014).
- 3. "Lipid Force Fields: Current Approaches to Force Field Development and their Accuracy" 2nd Molecular Simulations Summer School. University of Calgary (2014).
- 4. "Development of the All-atom CHARMM Lipid Force Field and Asymmetric Membrane Models for the PM and TGN of Yeast" *CECAM Workshop: The future of biomembrane simulations: hidden pitfalls and future challenges*, Lyon, France (2017).

- 5. "Molecular Mechanics and Force Fields" CHARMM-GUI School, *CECAM Workshop*, Lausanne, Switzerland (2018).
- 6. "Lipid Membrane Simulations" CHARMM-GUI School, *CECAM Workshop*, Lausanne, Switzerland (2018).
- 7. "Molecular Mechanics and Force Fields" KIAS CHARMM-GUI School, *KIAS*, Seoul, Korea (2019).
- 8. "Minimization & Molecular Dynamics" KIAS CHARMM-GUI School, *KIAS*, Seoul, Korea (2019).
- 9. "Lipid Membrane Simulations" KIAS CHARMM-GUI School, *KIAS*, Seoul, Korea (2019).

II.J. Sponsored Research Programs – Administered by the Office of Research Administration (ORA)

II.J.1. Grants

Current

Dates	Grant Title	PI	Co-PI	Funding Agency	Total Amount	JBK Share
8/2020- 7/2023	The Mechanism of Polyvalent Ion Competition with Membranes and Membrane- Associated Proteins	Klauda	S. Sukharev (UMD)	NSF/MPS/CHE	\$646,000	\$323,000
7/2020- 12/2020	I-Corps: Development of a Fouling Release Coating Formulation	Klauda		NSF/IIP	\$50,000	\$50,000
6/2020- 5/2022	EAGER: Collaborative Research: Design of Inhibitors for ORF7a and ORF7b Oligomerization in COVID-19	Klauda	B. Berger (UVA)	NSF/MPS/CHE	\$150,000	\$150,000
6/2020- 5/2021	CDK5 investigating drug targets	Klauda		NIST-PREP	\$60,513	\$60,513
2/2020- 1/2023	Studies on the Protein-assisted Mechanism for Intracellular Membrane Contact Sites	Klauda	Karlsson (UMD)	NSF/BIO/MCB	\$983,837	\$590,302
10/2018- 9/2021	GAANN: UMD GROW (Generating a	A. Asa-Awuku (UMD)	Klauda P. Kofinas (UMD)	Department of Education	\$447,750	\$0

Research Outstanding Workforce)				
		Total	\$2,338,100	\$1,173,815

Previous

Dates	Grant Title	PI	Co-PI	Funding Agency	Total Amount	JBK Share
6/2012- 5/2015	Collaborative Research: Development and Application of a Web-based Graphical User Interface for Membrane System Building and Analysis	W. Im (U. Kansas)	Klauda	NSF/BIO/DBI	\$125,081	\$125,081
8/2012- 7/2017	CAREER: Secondary Active Membrane Transporters: Determining Protein Structure and Transport Mechanisms with a New Hybrid Simulation Method	Klauda		NSF/BIO/MCB	\$668,313	\$668,313
2/2015- 1/2018	Sensing Biological & Non-biological Polymers with a Nanopore	Klauda		NIST	\$216,953	\$216,953
9/2016- 8/2019	Collaborative Research: Mechanisms for Cell Membrane Damage during Production of Biorenewable Fuels	Klauda L. Jarboe (Iowa State U.)		NSF/ENG/CBET	\$200,000	\$200,000
7/2018- 5/2020	Measuring Biomolecular Interactions with Field Effect Transistors and Simulations	Klauda		NIST	\$233,327	\$233,327
12/2019- 5/2020	CDK5 investigating drug targets	Klauda		NIST-PREP	\$25,532	\$25,532
				Total	\$1,469,206	\$1,469,206

II.K. Gifts and Funded Research not administered by ORA

II.K.4. Other

Listed below are two sections for funding of students intramurally at NIH and computational resources awarded through competitive grants and estimated value of award is listed when given.

NIH Support of Graduate Students

- 1. Support for a Graduate Student (Brent Rogaski) from Dr. Richard Pastor's Lab at NIH/NHLBI. Period (8/2010-8/2011)
- 2. Support for Graduate Student (Alison Leonard) from Dr. Richard Pastor's Lab at NIH/NHLBI. Period (1/2016-7/2019)
- 3. Support for Graduate Student (Yalun Yu) from Dr. Richard Pastor's Lab at NIH/NHLBI. Period (9/2018-current)
- 4. Support for Graduate Student (Mahdi Ghorbani) from Dr. Bernie Brook's lab at NIH/NHLBI. Period (6/2019-current)

Computational Award/Time (Reviewed Proposals)

- 1. "Simulations of a Sterol Transport Protein (Osh4) that Tethers Membranes of the Endoplasmic Reticulum and Plasma Membrane". **Anton** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA00009P. SU: 25,000 Anton node hours. (4/1/2011-9/30/2011).
- 2. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" TeraGrid Grant Number: TG-MCB100139 SU: 1,074,000 node hours (10/1/2010-9/30/2011)
- 3. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 450,154 node hours (10/1/2011-9/30/2012)
- 4. "Conformational changes in lactose permease of E. coli to understand spin label dynamics and helix movements". **Anton** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA12035P. SU: 50,000 Anton node hours. (11/1/2012-7/31/2013).
- 5. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 994,807 node hours (10/1/2012-9/30/2013).
- 6. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 2,311,419 node hours (10/1/2013-9/30/2014).
- 7. "Simulations of a Peripheral Membrane Protein Binding Mechanism to Yeast Organelle Membranes and Forming Membrane Contact Sites" **Anton** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA13048P. SU: 90,000 Anton node hours. (11/1/2013-7/31/2014).
- 8. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 3,033,692 node hours (10/1/2014-9/30/2015).

Value of awarded resources: \$104,978.

- 9. "Yeast membrane Simulations with Inositol Phosphoceramide with Applications to Lateral Organization and binding of a Peripheral Membrane Protein" **Anton** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA14030P. SU: 100,000 Anton node hours. (10/20/2014-7/31/2015).
- 10. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 5,912,434 node hours (10/1/2015-9/30/2016). **Value of awarded resources:** \$212,168.
- 11. "Phase Separation of Long-chained Inositol Phosphoceramide in Model Yeast Membranes" **Anton** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA15043P. SU: 100,000 Anton node hours. (11/1/2015-7/31/2016).
- 12. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 4,067,999 node hours (10/1/2016-9/30/2017). **Value of awarded resources:** \$184,040.
- 13. "Ligand effects on the biological function of the serotonin receptor in model raft-forming membranes" **Anton2** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA16007P. SU: 760,000 Anton2 node hours. (12/1/2016-11/30/2017).
- 14. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 4,204,234 node hours (10/1/2017-9/30/2018). **Value of awarded resources:** \$276,114.
- 15. "Antagonist and Glycosylation Effects on the Biological Function of the Serotonin Receptor" **Anton2** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA17009P. SU: 395,025 Anton2 node hours. (12/7/2017-11/30/2018).
- 16. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 1,110,246 CPU hours and 180,000 Node hours (1/1/2019-1/31/2019). **Value of awarded resources:** \$60,269.
- 17. "Unraveling the Structure-Function Relationship of the Serotonin Receptor (5HT3)" **Anton2** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: PSCA18011P. SU: 230,000 Anton2 node hours. (12/1/2018-11/30/2019).
- 18. "Modeling the Intracellular and Transmembrane Structure of the Active Dimer of PlexinA1" **Anton2** hosted by the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC). Grant Number: MCB110012P. SU: 460,000 Anton2 node hours. (12/1/2019-11/30/2020).
- 19. "Molecular Simulations of Transmembrane and Membrane-associated Proteins" XSEDE Grant Number: TG-MCB100139 SU: 2,660,000 CPU hours and 160,000 Node hours (1/1/2020-12/31/2020). **Value of awarded resources:** \$75,986.

<u>II.P.</u> Research Fellowships, Prizes, and Awards.

- 1. Pigford Fellowship (1998-1999): University of Delaware
- 2. IRTA Postdoctoral Fellow (2003-2007): National Institutes of Health
- 3. Minta Martin Award (2008-2010) \$60,000
- 4. NSF CAREER (2012-2017)
- 5. Omega Chi Epsilon Award from the Chi Chapter (UMD)
- 6. University System of Maryland's PROMISE AGEP Outstanding Faculty Mentor (2015)
- 7. Biochimica et Biophysica Acta Biomembranes: Editorial Board (2019-current)
- 8. Journal of Physical Chemistry B: Editorial Advisory Board (2020-current)

III. Teaching, Extension, Mentoring, and Advising

III.A. Courses Taught

Listed in the table below are the courses taught with their semester and enrollment numbers.

Course	Semester/Year	Enrollment
ENCH476: Statistics and Experimental Design	Spring/2008	26
ENCH648G: Statistics and Experimental Design	Spring/2008	6
ENCH610: Chemical Engineering Thermodynamics	Fall/2008	20
ENCH476: Statistics and Experimental Design	Spring/2009	29
ENCH648G: Statistics and Experimental Design	Spring/2009	5
ENCH648P: Molecular Modeling Methods	Fall/2009	12
ENCH476: Statistics and Experimental Design	Spring/2010	24
ENCH648G: Statistics and Experimental Design	Spring/2010	1
ENCH610: Chemical Engineering Thermodynamics	Fall/2010	14
ENCH476: Statistics and Experimental Design	Spring/2011	47
ENCH648G: Statistics and Experimental Design	Spring/2011	2
ENCH400: Chemical Engineering Thermodynamics	Fall/2011	69
ENCH476: Statistics and Experimental Design	Spring/2012	31
ENCH648G: Statistics and Experimental Design	Spring/2012	1
CHBE410: Statistics and Experimental Design	Fall/2012	100
CHBE302: Chemical Engineering Thermodynamics	Spring/2013	85
CHBE410: Statistics and Experimental Design	Fall/2013	80
CHBE476: Molecular Modeling Methods	Spring/2014	26
ENCH648P: Molecular Modeling Methods	Spring/2014	6
CHBE410: Statistics and Experimental Design	Fall/2014	93
CHBE476: Molecular Modeling Methods	Spring/2015	10
ENCH648P: Molecular Modeling Methods	Spring/2015	4
CHBE410: Statistics and Experimental Design	Fall/2015	94
CHBE302: Chemical and Biomolecular Engineering	Spring/2016	113
Thermodynamics II		
CHBE410: Statistics and Experimental Design	Fall/2016	116
CHBE302: Chemical and Biomolecular Engineering	Spring/2017	85
Thermodynamics II		

CHBE301: Thermodyna	and	Biomolecular	Engineering	Fall/2017	69
CHBE302: Thermodyna	and	Biomolecular	Engineering	Spring/2018	72
CHBE301: Thermodyna	and	Biomolecular	Engineering	Fall/2018	46
CHBE302: Thermodyna	and	Biomolecular	Engineering	Spring/2019	80
CHBE301: Thermodyna	and	Biomolecular	Engineering	Fall/2019	59
CHBE302: Thermodyna	and	Biomolecular	Engineering	Spring/2020	73

III.B. Teaching Innovations

III.B.6. Course or Curriculum Development.

Listed below are courses in which I developed course material from scratch.

Course	Semester/Year	
ENCH476: Statistics and Experimental Design	Spring/2008	
ENCH648G: Statistics and Experimental Design	Spring/2008	
ENCH610: Chemical Engineering Thermodynamics	Fall/2008	
ENCH648P: Molecular Modeling Methods	Fall/2009	
ENCH400: Chemical Engineering Thermodynamics	Fall/2011	
CHBE302: Chemical and Biomolecular Engineering	Spring/2016 (new	
Thermodynamics II	book and	
	organization)	
CHBE301: Chemical and Biomolecular Engineering	Fall/2017	
Thermodynamics I		

III.C. Advising: Research or Clinical

Current Active Group

Level	Students	# of researchers
High School	Leslie Wang	1
Undergrad	Leonard Unger, Tyla Holoman (LSAMP), Josh Fernandes, Yiding Yuan, Edward Niu, Erin Jackson, Jacob Olondo Kuba, Pavan Bhat, Crystal Lin	9
Graduate – M.S.	None	0
Graduate – Ph.D.	Qin Ni, Mahdi Ghorbani, Yalun Yu, Ruixing Wang, Tejaswi Tammareddy, Robert Allsopp, Omid Davoudi	7
Postdoc	Michael Kio, Min-Kang Hsieh, Sharmistha Kamakar	3

III.C.1. Undergraduate

Listed below are undergraduates that have worked in my lab researching on various projects. In total, there have been **75+ undergraduate/high students** that have worked under my direction. Also listed in the table are any awards and placement of these students.

#	Student	Time Period	Project &Awards	Graduation & Placement
1	Joseph Lim	S2008- Su2010	Various Lipid Membrane Studies and Osh4 Protein Awards • ASPIRE Program (2008) • UMD Bioscience Day (2008) best poster (Biochem/Biophys) • HHMI Undergrad Fellowship (2009-2010) • NSF Graduate Fellowship	B.S. 2010 MIT/ChE (PhD)
2	Marcus Hadley	Su2008- S2009	POPE membranes	B.S. 2010
3	Glen Guglietta	Su2008	Hydrates for Hydrogen Storage	B.S. 2009 Drexel Univ./ChE (PhD)
4	Joe O'Connor	F2008- Su2010	Ocular Lens Membrane Models and AQP0	B.S. 2010 PSU/ChE (PhD)
5	Krishan Parikh	F2009- S2010	Hydrates: Data collection	
6	Diana Villanueva	S2010- Su2011, F2012-	Lipid membrane studies Awards Travel award to the ACC "Meeting of Minds" Research Conference (2011)	B.S. 2013 GSK (Rockville, MD)
7	Mike Harris	Su2010- S2011	MOMP Protein	University of Minnesota/ChE (PhD)
8	Sabrina Wanys	Su2010- Su2011	Gulf of Mexico Hydrate Modeling	
9	Viviana Monje	F2010- Su2012	PUFA Lipids Awards LSAMP Student (2010- 12)	UMD/ChBE (M.S.)
10	Ivy Muregi	S2011- S2012	Aggregation of asphaltenes	Accenture then 2013 UPitt/ChE (PhD)

11	Andy Do (Chemistry)	S2011- F2012	AQP0 and Lens	
12	Alan Tran (Chemistry)	S2012- F2013	Lipid Membrane Studies	B.S. 2014
13	Sarah Lee (Chemistry)	S2012- S2014	Lipid Membrane Studies	B.S. 2014 Pharmacy School
14	Christopher Boughter (Physics)	S2012- S2015	Hydrotropes and Lipid membranes with cholesterol <i>Awards</i> ChBE Undergrad Research Award (2015)	B.S. 2015 U. Chicago/ Biophysics (PhD)
15	Judah Makeover	F2012- F2013	Temperature Dependence of Lipid Properties	B.S. 2015 Israeli Army
16	Matthew Allsopp	F2012- S2014	Micelle Formation with UA Models	B.S. 2014
17	Tae Yang	W2013- S2013	Aggregation of asphaltenes	B.S. 2013
18	Rob Pullen	W2013- Su2013	Toxic molecules from biofuels research (effects on membranes)	B.S. 2013 U. Tenn/ChE (PhD)
19	David Weglein	W2013- Su2014	ALPS-like motif of Osh4 with membranes	B.S. 2014
20	Jacob Hebert	S2013- F2014	Alkane-water surface tension Aggregation of asphaltenes	B.S. 2015
21	Sylvia Kang (Computer Sci.)	Su2013- F2016	Lipid Membrane and Educational Website Design	B.S. 2016
22	John Daristotle	Su2013- S2014	Toxic molecules from biofuels research (effects on membranes)	B.S. 2014 UMD/BioE (PhD)
23	Mengesteab Adera	Su2013- S2014	Gas Hydrates and Water Model Testing	B.S. 2014/ Schreiber Foods
24	Ryan Konas	Su2013- Su2015	Toxic molecules from biofuels research (effects on membranes)	B.S. 2015
25	Ndubuisi (Ben) Harbor	Su2013- S2014	Toxic molecules from biofuels research (effects on membranes)	B.S. 2014/U. Toronto
26	Sook Wong	F2013- S2015	Polysaccharide Lysases	B.S. 2014
27	Francis Bacarisas (BioE)	S2014- F2015	Ceramide bilayers	B.S. 2016/ Consulting Firm
28	Connor Welch	S2014- S2016	Ice formation Bilayer gel Formation	B.S. 2016 / Deloitte Consulting
29	Rui Ponte	F2014- S2016	CHARMM36UA testing	B.S. 2017

30	Mark Adams	F2014-	CHARMM36UA testing	B.S. 2016
		S2016	Ū	
31	Joshua Condon	F2014- S2015	Polysaccharide Lyases	B.S. 2015 UD/ChE (PhD)
32	Ky Wildermuth	Su2015- Su2017	Drude Testing and Osh4- ALPS with HMMM Award	B.S. 2017
33	Tylar Clark	S2015- S2016	OXE Poster Award (2016) Drude Testing on DMPC bilayer	B.S. 2018 JHU/Phys.
		52010	Award (at JHU)	Chem (PhD)
			NSF GRF (2019)	
34	Monica Chu (BioE)	S2015- S2017	PE/PG bilayers and drug binding	B.S. 2018
35	Lidiya Gavrilenko	Su2015- F2016	Aggregation of asphaltenes Award OXE Poster Award (2015)	B.S. 2016
36	Lenny Fobe	Su2015- S2018	Buffer interaction with lipids and FF development. Ceramide pore formation	B.S. 2018 U. Colorado – Boulder (PhD)
37	Nao Rho (Computer Science)	Su2015- F2016	PE/PG bilayers and manual development	
38	Samuel Guo	S2016	Gas Hydrate (CO ₂ Sequester) GoM depth map	
39	Yusuf Khan	Su2016- S2017	Ceramide bilayers	B.S. 2017
40	Nebeyu Mesfin	Su2016- F2017	Cell membrane damage during biofuels/chemical production	B.S. 2019
41	Eric Wang (BioE)	Su2016- Su2019	Sphingolipid mixtures with cholesterol, ocular lens membranes and skin membranes **Awards** • HHMI Undergraduate Research Fellow (2017) • Jeffry Madura Outstanding Research Award at ACS Fall 2017 Meeting (COMP Poster Session) • Goldwater Scholarship AY2018 • Churchill Scholarship • NSF GRF (2019)	M.S. University of Cambridge (2019-2020) Ph.D. Harvard- MIT (2020-), Biomedical Engineering

42	Kirellos Elsaad	F2016- S2018	Gas Hydrate simulations of benzene/cyclohexane growth	B.S. 2018
43	Annika Vaerst	F2016- S2016	Ocular Lens	
44	Linnea Warburton (ME)	S2016- Su2019	AMP Peptides and membranes Awards NSF GRF (2020)	B.S. MechE (2020), Ph.D. ME program at UC Berkeley
45	Chris Hiner (BioE)	F2017- S2019	CDK5 structure and electrostatics	B.S. 2019 Albert Einstein College of Medicine Ph.D. in Biomedical Sciences (2019-)
46	Emma Moore (BioE)	F2017- S2018	Neurological Membranes	B.S. 2020
47	Lauren Moyer (BioE)	F2017- S2018	AMP peptides	B.S. 2020
48	Leonard Unger (Math)	F2017-	Lyme Bacterial Membrane Models	Transfer to Brown
49	Tyler Cline	Su2017- S2018	AMP work with Stephanie Nagle at CMU Awards BS/MS ChBE program	MS. 2019
50	Juan Correa	Su2018- S2019	Gas hydrates for separation with MD simulations	
51	Niayesh Razi (Chemistry)	Su2018- F2019	Drug-membrane interactions and partitioning	
52	Marc Harron	Su2018- F2019	Biofuels project and interaction with membranes	B.S. 2020
53	Nidhi Kalaria (BioE)	Su2018- F2018	Membranes	
54	Owen Roy (BioE)	Su2018- Su2019	AMPs with skin (β-defensin)	
55	Tyla Holoman	Su2018-	AMPs with skin Awards LSAMP URP	
56	Josh Fernandes	Su2018-	Ocular Lens Membranes	
57	Kyle Pomykala	F2018- S2019	Ecophysics and Entropy	B.S. 2020
58	Yiding Yuan	S2019-	Neurological Membranes	
59	Yueqi (Edward) Niu	S2019-	Immune Cell Modeling	

60	Erin Jackson	Su2019-	Antimicrobials with	
			Membranes	
			Awards	
			 LSAMP URP 	
61	Jacob Olondo Kuba	F2019-	Statins and Cellular	
			Membranes	
62	Pavan Bhat	S2020-	PUFA Lipids	
63	Crystal Lin	Su2020-	QM of Reactions at Surfaces	
	·		with DFT	
64	Sarah Browning	F2020-	AMPS with membrane	
	Ç		asymmetry	
65	Dai-Bao Van	F2020-	Archeal membrane with ether	
			branched lipids	
66	Deepika Tripu	F2020-	Metal ion binding	
67	Sasha Coats-Park	F2020-	Auxin binding to membranes	

Listed below are high school students, undergraduates or those with only undergraduate degrees who worked in my lab but were not students at UMD.

#	Student	Time Period	Project	School & Placement
1	Muhammad Saad Noon	Su2009- Su2010	Protein Structure Prediction (Chlyamidia MOMP)	COMSATS Institute of Information Technology, Islamabad B.S. 2009 Research Scholar at Alex MacKerell's Lab
2	Arpan A. Bandyopadhyay	Su2010	Hydrate Modeling (with electrolytes)	IIT/Bombay U. Minnesota- ChE (Ph.D.)
3	Yubaraj Boro	Su2011	Hydrate Coding/MD simulations	IIT/Guwahati
4	Allen Chang	Su2010, Su2011	Hydrate GUI-code	Poolesville High School MSE/UMD (B.S.)
5	Joshua Nichols	F2012- S2013	Temperature Dependence of Lipid Properties	Eleanor Roosevelt High School ChBE/UMD (B.S.)
6	Michael Lu	F2013- S2014	Ceramide Bilayers	Eleanor Roosevelt High School <i>ChBE/UMD</i>

				(B.S.)
7	Anna Ou	Su2014- S2016	Lipids with two double bonds and peroxidation	Montgomery Blair High School UC-Berkeley
8	Edgar Sanchez	Su2016	Butanol simulations with an organic interface	Universidad Nacional Autónoma de México
9	Michelle Marsandi	F2016- S2017	Cell membrane damage during biofuels/chemical production	Eleanor Roosevelt High School
10	Muhamad Zakaria	Su2017- S2018	Cell membrane damage during biofuels/chemical production	Al-Huda School in College Park
11	Andrew Selvadoss	Su2017- F2017	Cell membrane damage during biofuels/chemical production (Dual bilayer models)	Poolesville High School ChBE/UMD (B.S.)
12	Alan Li	Su2018	Membrane effects on α-HL	Montgomery Blair High School
13	Leslie Wang	S2020-	Training and Membrane Projects	Marriotts Ridge High School

III.C.2. Master's

	Student	Time Period	Thesis & Awards	Graduation & Placement
1	Brent Rogaski	S2009- F2010	Computational Studies on the Binding and Dynamics of the Osh4 Protein of Yeast and a Model Yeast Membrane System	M.S. 2010 UMD/ChBE (PhD)
2	Kunal Pandit	S2010- F2011	Membrane Models of <i>E. coli</i> Containing Cyclic Moieties in the Aliphatic Lipid Chain Awards Nominated by ChBE for the Dean's Masters Research Awards Competition	M.S. 2011-12 UMD/ChBE (PhD)
3	Viviana Monje	F2012- F2014	Computational Studies on Organelle-specific Yeast Membrane Models Awards	M.S. 2014/ChBE (PhD)

			LSAMP Bridge to Doctorate Fellowship	
4	Rehan Choudhary	Su2013- S2017	Modeling Liquid Evaporation and using Molecular Dynamics Simulations to estimate Diffusion Coefficients and Relative Solved Drying Times	M.S. 2017 DOE
5	Tyler Cline	Su2017- Su2019	Molecular Simulation of Antimicrobial Peptide WLBU2-MOD Binding with Gram-Negative Inner Membrane Mimics Awards BS/MS ChBE program	MS. 2019
6	Tejaswi Tammareddy	Su2018- S2019	Effects of Lipid-Protein Interactions on the Conductance of the Transmembrane Protein Alpha-Hemolysin using Molecular Dynamics Simulations	M.S. 2019 Ph.D. Program

III.C.3. Doctoral

#	Student	Time Period	Dissertation & Awards	Graduation & Placement
1	Pushkar Pendse	S2008- S2013	Computational Studies on Lactose Permease of <i>E. coli</i> as a Model for Membrane Transport Proteins **Awards* • 2nd place at UMD's ResearchFest 2010 • 1st place poster at GRID's Modeling & Simulation Section • ACS/CSW travel award to 2012 Spring Meeting	Postdoc at Dr. Michael Grabe's lab in collaboration with UCLA experiments (Dr. Abramson)
2	Brent Rogaski	F2010- S2012	Awards • ACS/CSW travel award to 2011 Spring Meeting	Left program early for Industrial Job at

				Power Plant
				Manufacturing (Western
				Services
				Corporation,
				Fredrick, MD)
3	Viviana Monje-Galvan	F2014- S2017	Computational Studies of Membrane Models and their Interaction with a Peripheral Protein in Yeast, and Disruption of the Water-oil Interface by a Hydrotrope Awards • ACS/CSW travel award to 2015 Spring Meeting • 2nd Place for TA of the Year award (2015) • Outstanding Graduate Assistant for AY 2015-16 • Anne Wiley Semester Fellowships AY 2015-16	Postdoc at U. Chicago in Dr. Greg Voth's lab. U. Buffalo (SUNY) Faculty (S21-current)
4	Pouyan Khakbaz	S2013- F2017	Computational Studies of Lipid Bilayers and Transmembrane Proteins	Postdoc at U. Illinois Urbana- Champaign (Dr. Diwakar Shukla)
5	Xiaohong Zhuang	S2013- F2016	Computational Simulations on Membranes and a Transmembrane Protein	Postdoc at Naval Research Lab
6	Nick Guros	S2015- Su2019	Advancements in Label-free Biosensing Using Field- Effect Transistors and Aided by Molecular Dynamics Simulations Awards Poster Award at the 4 th International Conference of Molecular Simulations Outstanding Graduate Assistant for AY 2018-19 2 nd Place in the Clark's School PhD Dissertation	AstraZeneca/ MedImmune
7	Allison Leonard	S2015- Su2019	Competition Lipid Force Field Parameterization for Improved Modeling of Ion- Lipid Interactions and Ether Lipid, and Evaluation of the effects of Long-range	Postdoc at Ed Lyman's Lab (U. Delaware)

			Lennard-Jones Interactions on Alkanes Awards • Hockmeyer Scholarship AY 2016-17 (CMNS fellowship)	
8	Qin Ni	S2016-	Current student; Co-advised with Garyk Papoian (Chem/IPST)	
9	Mahdi Ghorbani	S2018-	Current student	
10	Yalun Yu	S2018-	Current student (Biophysics Program)	
11	Ruixing Wang	F2018-	Co-advised with Pratyush Tiwary (Chemistry PhD Student)	
12	Tejaswi Tammareddy	F2019-	Current student; co-advised with Antonio Cardone (NIST)	
13	Robert Allsopp	S2019-	Current student	
14	Omid Davoudi	Su2020-	Current student; co-advised with Sergei Sukharev (BIO)	

III.C.4. Post-doctoral

#	Student	Time Period	Research Area	Placement
1	Indrani Bera	S2015- F2019	Computational studies on membranes (PSM mixtures), signaling proteins (PlexinA3 with CGMD) and SAT proteins (SWEET family)	
2	Michael Kio	S2017-	Computational Studies of Nanoparticle transport across membranes	
3	Min-Kang Hsieh	S2020-	Inner membrane of Gram Negative bacteria (Asymmetry effects)	
4	Sharmistha Karmakar	S2020-	Oxysterol Binding Protein Studies	

III.D. Mentorship

III.D.1. Junior Faculty

- 1. Prof. Taylor Woehl (Chemical and Biomolecular Engineering)
- 2. Prof. Chen Zhang (Chemical and Biomolecular Engineering)
- 3. Prof. Paul Albertus (Chemical and Biomolecular Engineering)

III.E. Advising: Other than Research Direction

III.E.1 Undergraduate

Listed below is the number of students whom I was an academic advisor for to aid in

registration and other academic associated issues per each academic year.

- 1. 2007-2008: 11
- 2. 2008-2009: 27
- 3. 2009-2010: 27
- 4. 2010-2011: 25
- 5. 2011-2012: 24
- 6. 2012-2013: 32
- 7. 2013-2014: 30
- 8. 2014-2015: 28
- 9. 2015-2016: 28
- 10. 2016-2017: 10
- 11. 2017-2018: 5
- 12. 2018-2019: 6
- 13. 2019-2020: 5

IV. Service and Outreach

IV.A. Editorships, Editorial Boards, and Reviewing Activities

IV.A.2. Editorial Boards

- 1. Biochimica et Biophysica Acta Biomembranes: Editorial Board (2019-current)
- 2. Journal of Physical Chemistry B: Editorial Advisory Board (2020-current)

IV.A.3 Reviewing Activities for Journals and Presses

Listed below is a table of journals which I have reviewed manuscripts and amount of reviews and significant revision reviews.

Journal	Year First Reviewed	# of Reviews
AIChE Journal	2007	4
ACS Applied Biomaterials	2018	2
ACS Central Science	2019	2
ACS Chemical Neuroscience	2020	1
ACS Infectious Diseases	2018	2
ACS Omega	2019	3
Accounts of Chemical Research	2018	2
BBA-Biomembranes	2014	33
Biochemistry	2010	8
Bioelectrochemistry	2021	1
Biophysical Journal	2007	45
Biophysical Chemistry	2016	2
BMC Biology	2020	1
Canadian Journal of Chemistry	2014	1
Chemical Engineering Research and Design	2014	1
Chemical Engineering Science	2014	1
Chemistry and Physics of Lipids	2015	13
Chemical Physics Letters	2010	4

Cl. ' ID. '	2010	2
Chemical Reviews	2018	2
Chemical Science	2020	1
Colloids and Surfaces B	2019	1
Communications Biology	2018	2
Computational and Structural Biotechnology Journal	2017	2
Energies	2012	3
Energy & Fuels	2015	2
Environmental Geotechnics	2020	1
Experiment Eye Research	2018	2
FEBS Open Bio	2020	1
Fluid Phase Equilibria	2012	9
Frontiers Molecular Bioscience	2019	2
Geophysical Research Letters	2007	1
Industrial & Engineering Chemistry Research	2009	18
Journal of the American Chemical Society	2011	3
Journal of Biomolecular Structure & Dynamics	2019	2
Journal of Cell Science	2015	1
Journal of Chemical & Engineering Data	2013	3
Journal of Chemical Information and Modeling	2012	13
Journal of Chemical Physics	2009	9
Journal of Chemical Theory and Computation	2013	20
Journal of Computational Chemistry	2008	13
Journal of Membrane Biology	2015	2
Journal of Molecular Biology	2009	2
Journal of the Mexican Chemical Society	2016	1
Journal of Molecular Graphics and Modelling	2010	3
Journal of Physical Chemistry (A/B/C)	2007	76
Journal of Physical Chemistry Letters	2011	9
Journal of Physics: Conference Series	2017	1
Journal of Scientific Research and Reports	2013	1
Journal of Structural Biology	2020	1
Langmuir	2008	13
Lipids	2020	1
Molecular Membrane Biology	2012	3
Molecular Simulation	2017	6
Nanoscale	2020	1
Nature Communications	2018	4
Nature Methods	2017	2
Nature Structural & Molecular Biology	2020	2
PeerJ	2018	2
Physical Chemistry Chemical Physics	2019	4
Polymer	2010	1
PLoS Computational Biology	2010	8
PLoS One	2012	11
Proceedings of the National Academy of Sciences	2012	4
Proteins: Structure, Function, and Bioinformatics	2014	9
RSC Advances	2020	1
ROO Auvanoes	2020	1

Royal Society Open Science	2020	1
Scientific Reports (Nature Pub)	2018	4
Soft Matter	2019	1
Trends in Biochemical Sciences	2019	1
Wire: Systems Biology and Medicine	2016	2

IV.A.4 Reviewing Activities for Agencies and Foundations

- 1. NSF Grant Review Panel (2008): Directorate for Engineering
- 2. Qatar National Research Fund Grant Review Panel (2009)
- 3. Qatar National Research Fund Grant Review Panel (2010)
- 4. NSF External Grant Review: Directorate for Geosciences (2010)
- 5. NSF External Grant Review: Directorate for Mathematical and Physical Sciences (2011).
- 6. Canada Foundation for Innovation Grant Reviewer (2011)
- 7. Qatar National Research Fund Grant Review Panel (2011)
- 8. DOE SCGF (Graduate Fellowship) reviews (2012).
- 9. NSF External Grant Review: Directorate for Mathematical and Physical Sciences (2012)
- 10. Qatar National Research Fund Grant Review Panel (2012)
- 11. NSF External Grant Review: Directorate for Mathematical and Physical Sciences (2013)
- 12. Qatar National Research Fund Grant Review Panel (2013)
- 13. NSF External Grant Review: Directorate for Mathematical and Physical Sciences (2014)
- 14. NIH: Program Grant Review (2014)
- 15. NIH: *ad hoc* member to the Biochemistry and Biophysics Study Section (BBM) (June 2014).
- 16. NSF External Grant Reviewer (4 grants): Directorate for Biological Sciences (2014)
- 17. NSF External Grant Reviewer (2 grants): Directorate for Mathematical and Physical Sciences (2014)
- 18. NSF External Grant Reviewer (2 grants): Directorate for Biological Sciences (2015)
- 19. NSF External Grant Reviewer (1 grant): Directorate for Mathematical and Physical Sciences (2015)
- 20. DOE Mail-in Reviewer (1 grant): Office of Basic Energy Sciences (2015)
- 21. NSF External Grant Reviewer (1 grant): Directorate for Biological Sciences (2016)
- 22. NIH: Special Emphasis Panel R21/R01 Grant Reviews (April, 2016)
- 23. NIH: K99/R00 Applications to NIEHS (June, 2018)
- 24. FDA: Compositionally Different Topical Formulations RFA (July, 2018)
- 25. Independent Research Fund-Denmark: DFF-Starting Grant (July, 2018)

- 26. Czech Science Foundation: Standard Project (July, 2018)
- 27. ACS PRF: Grant Reviewer (March, 2019)
- 28. Czech Science Foundation: Standard Project (July, 2019)
- 29. Knowledge Foundation (Swedish Research Foundation): Grant Reviewer (October, 2019).
- 30. NSF Grant Reviewer (multiple grants/NSF wide) (2020)
- 31. NSF External Grant Reviewer (1 grant): Directorate of Mathematical and Physical Sciences (2020)
- 32. NSF External Grant Reviewer (1 grant): Directorate of Biological Sciences (2020)
- 33. NOW Domain Science Klein (Netherlands) Grant Reviewer (1 grant, 2020)
- 34. Czech Science Foundation: Standard Project (July, 2020)

IV.B. Committees, Professional & Campus Service

IV.B.1 Campus Service – Departmental

Service from ChBE is unnoted; service for the Biophysics Program is noted. Departmental service committees listed first in blue then thesis defenses are listed here with date and advisor listed.

- 1. Faculty Assembly Committee (2008-2016, 2020-current)
- 2. Graduate Studies Committee (2010-current)
- 3. Omega Chi Epsilon Faculty Advisor (2013-current)
- 4. Salary Review Committee (2011-2014, 2016-17)
- 5. Associate Chair and Graduate Director (July 2015-current)
- 6. Biophysics Graduate Application Review Committee (2016-current)
- 7. Faculty Assembly Chair (2020-current)
- 8. Co-Graduate Director of Biophysics Program (August 2020-current)
- 9. M.S. Thesis Committee member: Maria del Pilar Leon (4/25/2008 Adomaitis)
- 10. M.S. Thesis Committee member: Thomas C. Palathra (5/29/2008 Adomaitis)
- 11. Ph.D. Proposal Committee member: Kunshan Sun (9/25/2008 Raghavan)
- 12. M.S. Thesis Committee member: Sai Kishore Mamidi (12/4/2009 Panos)
- 13. Ph.D. Defense Committee member: Patricia Castellanos (12/11/2009 Ehrman)
- 14. Ph.D. Defense Committee member: Kunshan Sun (9/30/2009 Raghavan)
- 15. Ph.D. Defense Committee member: Vivek Dwivedi (4/16/2010 Adomaitis)
- 16. Ph.D. Proposal Committee member: David Arana-Chavez (6/28/2010 Adomaitis)
- 17. Ph.D. Proposal Committee member: Szu-Ting Chou (10/21/2010 Seog)
- 18. M.S. Thesis Chair of Committee: Brent Rogaski (10/29/2010)
- 19. Ph.D. Proposal Committee member: Deepa Subramanian (2/1/2011 Anisimov)
- 20. Ph.D. Proposal Committee member: Daphne Fuentevilla (12/15/2011 Anisimov)
- 21. Ph.D. Defense Committee member: Paul Shriner (12/19/2011 N. Wang)
- 22. M.S. Thesis Chair of Committee: Kunal Pandit (12/20/2010)
- 23. Ph.D. Proposal Committee member: Curtisha Travis (1/24/2012 Adomaitis)
- 24. Ph.D. Proposal Committee chair: Pushkar Pendse (3/13/2012)
- 25. Ph.D. Proposal Committee chain: Brent Rogaski (4/2012)

- 26. Ph.D. Defense Committee member: Deepa Subramanian (5/8/2012 Anisimov)
- 27. M.S. Thesis Committee Member: Stephen Banik (8/3/2012 Raghavan)
- 28. Ph.D. Defense Committee member: Daphne Fuentevilla (11/12/2012 Anisimov)
- 29. Ph.D. Defense Chair of Committe: Pushkar Pendse (4/14/2013)
- 30. Ph.D. Proposal Committee member: Annie Lu (6/3/2013 Raghavan)
- 31. M.S. Thesis Committee member: Kevin Diehn (1/21/2014 Raghavan)
- 32. Ph.D. Defense Committee member: Szu-Ting Chou (2/3/2014 Mixon)
- 33. M.S. Thesis Chair of Committee: Viviana Monje-Galvan (11/14/2014)
- 34. Ph.D. Defence Committee member: Annie Lu (5/18/2015 Raghavan)
- 35. Ph.D. Proposal Committee Chair: Xiaohong Zhang (5/12/2015 Klauda)
- 36. Ph.D. Dissertation Committee member: Annie Lu (5/18/2015 Raghavan)
- 37. Ph.D. Dissertation Committee member: David Arana-Chavez (6/15/2015 Adomaitis)
- 38. Ph.D. Proposal Committee Chair: Pouyan Khakbaz (6/22/2015 Klauda)
- 39. M.S. Thesis Committee member (Biophysics): Brian Stock (7/31/2015 Seog)
- 40. Ph.D. Proposal Committee member: Navadeep Boruah (8/27/2015 Sriram)
- 41. M.S. Thesis Committee member: Nairui Zhou (12/3/2015 Sriram)
- 42. Ph.D. Proposal Committee member: Svet Ikonomova (12/16/2015 Karlsson)
- 43. Ph.D. Proposal Committee Chair: Viviana Monje-Galvan (1/14/2016 Klauda)
- 44. Ph.D. Proposal Committee member: Zifan Gong (6/27/2016 Karlsson)
- 45. Ph.D. Proposal Committee member: Abdollah Koolivand (11/10/2016 Dimitrakopoulos)
- 46. Ph.D. Defense Committee Chair: Xiaohong Zhang (12/7/2016 Klauda)
- 47. Ph.D. Defense Committee Chair: Viviana Monje-Galvan (3/23/2017 Klauda)
- 48. M.S. Thesis Committee member: YiYang Wang (3/31/2017 Dimitrakopoulos)
- 49. M.S. Thesis Committee member: Alan Uy (4/20/2017 Adomaitis)
- 50. M.S. Thesis Committee member: Pompon Udipabu (5/30/2017 Dimitrakopoulos)
- 51. Ph.D. Proposal Committee member: Sean Mack (6/14/2017 Dwyer)
- 52. Ph.D. Defense Committee member: Zifan Gong (6/15/2017 Karlsson)
- 53. Ph.D. Defense Committee member: Svet Ikonomova (7/15/2017 Karlsson)
- 54. M.S. Thesis Committee member: Sayanee Adhikari (7/27/2017 Karlsson)
- 55. M.S. Thesis Committee member: Ben Minnick (7/31/2017 Calabrese)
- 56. Ph.D. Defense Committee member, Dean Rep (Biophysics): Yonathan Cwik (8/17/2017 Thirmalai)
- 57. M.S. Thesis Committee member: James Liu (11/1/2017 Raghavan)
- 58. Ph.D. Proposal Committee Chair: Nick Guros (12/1/2017 Klauda)
- 59. Ph.D. Defense Committee Chair: Pouyan Khakbaz (12/13/2018 Klauda)
- 60. Ph.D. Proposal Committee member: Najlaa Hassan (3/1/2018 Al-Sheikhly)
- 61. Ph.D. Defense Committee member: Abdollah Koolivand (4/12/2018 Dimitrakopoulos)
- 62. Ph.D. Proposal Committee member: Jung Kim (4/17/2018 Calabrese)
- 63. Ph.D. Proposal Committee member: Oin Ni (6/1/2018 Klauda/Papoian)
- 64. M.S. Defense Committee member: Thomas Deskins (7/13/2018 Dimitrakopoulos)
- 65. Ph.D. Defense Committee member, Dean Rep (Biophysics): Hongcheng Xu (7/17/2019 Matysiak)
- 66. Ph.D. Defense Committee member: Navadeep Boruah (9/10/2018 Sriram)

- 67. Ph.D. Proposal Committee member: Niti Agrawal (12/13/2018 Raghavan)
- 68. Ph.D. Defense Committee member: Najlaa Hassan (1/17/2019 Al-Sheikhly)
- 69. Ph.D. Proposal Committee member: Sayanee Adikari (4/15/2019 Karlsson)
- 70. Ph.D. Defense Committee member, Dean Rep (Biophysics): Guang Shi (5/17/2019 Thirmalai)
- 71. Ph.D. Defense Committee Chair: Alison Leonard (6/18/2019 Klauda/Biophys)
- 72. Ph.D. Defense Committee Chair: Nick Guros (6/26/2019 Klauda)
- 73. M.S. Defense Committee Chair: Tyler Cline (7/10/2019 Klauda)
- 74. Ph.D. Proposal Committee member: Salimeh Gharazi (8/8/2019 Al-Sheikhly)
- 75. Ph.D. Proposal Committee member: Dan Lugar (8/15/2019 Sriram)
- 76. Ph.D. Defense Committee member: Niti Agrawal (12/12/2019 Raghavan)
- 77. Ph.D. Defense Committee member: Sean Mack (4/15/2020 Dwyer)
- 78. Ph.D. Defense Committee member: Sayanee Adikari (5/28/2020 Karlsson)

IV.B.2 Campus Service – College

College committees are listed first in blue then thesis defenses.

- 1. APT Committee (July 2014-June 2017)
- 2. Engineering HPC Allocation Committee (June 2014-current)
- 3. Engineering HPC Allocation Committee Chair (August 2015-current)
- 4. Ph.D. Proposal Committee member: Christina Kyrtsos (12/1/2009 BioE)
- 5. Ph.D. Proposal Committee member: Mohammad Alizadeh (11/7/2012 MechE)
- 6. Ph.D. Defense Committee member: Mohammad Alizadeh (7/21/2014 MechE)
- 7. Ph.D. Dissertation Defense: Sai Ganesan (4/11/2016 Matysiak)
- 8. Ph.D. Dissertation Defense member: Haiging Zhao (3/30/2018 Papoian/Biophys)
- 9. Ph.D. Dissertation Defense member: Greg Custer (4/6/2018 Matysiak/BioE)
- 10. Ph.D. Dissertation Defense Deans Rep: Krystina Hess (7/25/2018 Jewell/BioE)
- 11. Ph.D. Dissertation Defense Deans Rep: Hongcheng Xu (7/17/2018 Matysiak/BioE)
- 12. Ph.D. Defense Committee Deans Rep: Teddy Baker (12/18/2019 Weeks/ChemPhys)

IV.B.3 Campus Service – University

- 1. Allocations and Advisory Committee (AAC) for DIT's High Performance Computational Cluster (2008-current)
- 2. Chair of AAC (Fall 2017-current)
- 3. Research Technology Work Governance Group of the UM IT Council (Senate associated work group, 2016-current): advise IT on how to support campus-wide research computing
- 4. Vice Chair of the Research Technology Work Governance Group (Fall 2016-Spring 2019)
- 5. Chair of the Research Technology Work Governance Group (Fall 2019-current)
- 6. Member of the IT Council (Fall 2019-current)
- 7. Scientific Management Committee for MARCC a joint JHU/UMD resource (Spring 2018-current)
- 8. High performance Computing Committee for DIT (2010-2015): Future directions for

HPC at UMD

- 9. Academic Honor Council Boards (2013-2015): 1-2 per semester
- 10. Senator in the University Senate (5/2013-5/2016)
- 11. HPC Lecture Series Committee for OIT (2014): Help organize and setup speakers to this lecture series
- 12. RTWG Sub-committee on Supercomputing (Fall 2017-Spring 2018)
- 13. Graduate Council (Fall 2016-Spring 2020)
- 14. Graduate PCC Committee (Fall 2018-Spring 2019)
- 15. Enabling Research Work Group of the UM IT Council (Senate associated work group, 2014-2016): advise IT on how to support campus-wide research computing

IV.B.8 Leadership Roles in Meetings and Conferences

- 1. Co-Chair 2008 AIChE National Meeting Session titled "Thermodynamics and Transport in Lipid Bilayers"
- 2. Co-Chair 2009 AIChE National Meeting Session titled "Thermodynamics and Transport in Lipid Bilayers"
- 3. Chair 2010 AIChE National Meeting Session titled "Thermodynamics and Transport in Lipid Bilayers"
- 4. Co-Chair 2010 AIChE National Meeting Session titled "In Honor of Stanley Sandler's 70th Birthday II"
- 5. Chair 2011 AIChE National Meeting Session titled "Thermodynamics and Transport in Lipid Bilayers"
- 6. Co-Chair 2012 AIChE National Meeting Session titled "Model Development for Biomolecular Systems"
- 7. Chair 2013 AIChE National Meeting Session titled "Model Development for Biomolecular Systems"
- 8. Chair 2015 AIChE National Meeting Session titled "In Honor of Stanley Sandler II"

IV.F Community & Other Service

- Review Panel for TOSHIBA/NSTA ExploraVision science competition for K-12 Students (2/2016)
- 2. Review Panel for TOSHIBA/NSTA ExploraVision science competition for K-12 Students (2/2017)