
Technology Innovation 
(Hardware, Software, and What You Can Learn from Startup 
Companies)

Bruce Jacob, Ph.D.

Keystone Professor & Director of Computer Engineering,
Electrical & Computer Engineering Dept.
University of Maryland
College Park, Maryland
http://www.ece.umd.edu/~blj/

Formerly 
Chief Engineer & System Architect,
Priority Call Management (now uReach Technologies)
Wilmington, Massachusetts

OUTLINE

1. Introduction: To Mandate Creativity

2. A Diversion: Software Guys vs. Hardware Guys

Characteristics of Software as an Engineered Product

Characteristics of Hardware as an Engineered Product

And Ne’er the Twain Shall Meet?

3. e Motivation and Reward of Engineers

A Page from the Startup Story

A Structure for Identification and Reward: Venture Capitalism

4. e Value of Design

A Tale of ree Design Flows

Emergent Paradigms: Manufacturing as a Service, Design as an End Product

KEY WORDS

Engineering Design, Managing Engineers, Design Principles

1

http://www.ece.umd.edu/~blj/
http://www.ece.umd.edu/~blj/


ABSTRACT

Innovation is highly sought after: it is extremely valuable, extremely rare, and extremely 
difficult to do. An executive desiring an innovative company should first realize that innovation is 
the product of individuals, not organizations. us, one obvious approach to creating an 
innovation-based company is to focus on rewarding innovative individuals—the decision-makers 
in engineering—in the same manner as typical companies are currently structured to reward 
decision-makers at the executive level and in sales, i.e. by their contribution to the bottom line. 

Technology innovation can take multiple forms, from new products to new ways to make 
products, and the characteristics of hardware and software systems point to opportunities such as 
the comprehensive use of CAD tools for embedded-systems design. In the new pace of business, 
increased competition at the manufacturing level actually enables a company to spend more time, 
effort, and money on approaches that will lead to innovation.

INTRODUCTION: TO MANDATE CREATIVITY

Paul Graham, co-founder of 1990s startup Viaweb and co-developer of its software, which 
now powers Yahoo! Stores, motivates the inherent tension and challenge of technology 
innovation in a typical corporate setting (Graham, 2004):

Big companies can develop technology. ey just can’t do it quickly. eir size makes them slow 
and prevents them from rewarding employees for the extraordinary effort required. So in practice 
big companies only get to develop technology in fields where large capital requirements prevent 
startups from competing with them, like microprocessors, power plants, or passenger aircraft. And 
even in those fields they depend heavily on startups for components and ideas.

In the right kind of business, someone who really devoted himself to work could generate ten or 
even a hundred times as much wealth as an average employee. A programmer, for example, instead 
of chugging along maintaining and updating an existing piece of software, could write a whole 
new piece of software, and with it create a new source of revenue.

Companies are not set up to reward people who want to do this. You can’t go to your boss and say, 
“I’d like to start working ten times as hard, so will you please pay me ten times as much?” For one 
thing, the official fiction is that you are already working as hard as you can. But a more serious 
problem is that the company has no way of measuring the value of your work.

A company that could pay all its employees so straightforwardly [as its executives and salesmen, 
based upon revenue generated] would be enormously successful. Many employees would work 

2



harder if they could get paid for it. More importantly, such a company would attract people who 
wanted to work especially hard. It would crush its competitors.

at’s the real point of startups. Ideally, you are getting together with a group of other people who 
also want to work a lot harder, and get paid a lot more, than they would in a big company. And 
because startups tend to get founded by self-selecting groups of ambitious people who already 
know one another (at least by reputation), the level of measurement [of individual skill and 
contribution] is more precise than you get from smallness alone. A startup is not merely ten 
people, but ten people like you.

[pages 101, 96–97, 99, from the essay “How to Make Wealth”]

Your job as an executive is to figure out how to turn your large company into an innovation 
machine—to generate new ideas and technology well and relatively often. To anyone who 
creates, the notion itself should smack of incredible hubris: innovation is the creation of really 
useful stuff, and so to declare one’s company “innovation oriented” is essentially to mandate 
creativity. However, as any creative person will attest, creativity stubbornly refuses to be 
mandated, else the phrase “writer’s block” would hold no meaning whatsoever. So how, then, 
could one possibly center one’s business model around something as slippery as innovation and 
retain any hope of staying alive?

Let us get a few facts out onto the table to begin with. It would be good to bear these in 
mind; they are the obstacles that stand in the way of the executive or manager who desires his 
organization to innovate. Overcoming these obstacles is the focus of this chapter.

• Technology innovation is ridiculously difficult; it requires extraordinary effort, dedication, 
time, and focus of attention on the part of extremely talented individuals. 

• Technology innovation is driven by individuals, not organizations: if you do not have 
extremely good people, it simply will not happen.

• Innovation usually but not always comes from engineers. Good ideas do come from all 
sources, but even when an idea originates outside of engineering, it is the engineer who 
makes the idea work. erefore the article will focus on understanding and motivating the 
individual engineer. 

• e majority of engineers tend to be good at only one of the following two skills: their 
job and promoting themselves. Some are good at neither, and it is the rare case in which 
an individual is good at both. us, in almost every single engineering organization, from 

3



the corporate R&D department to the university, there is a rough inverse relationship 
between people’s salaries and their contribution to the organization’s bottom line.

• e disparity of salaries and their lack of correlation to skill is quite well known to the 
engineers themselves. is generates non-vocalized morale problems and causes the 
extremely talented individuals to leave large companies and seek their fortune elsewhere, 
typically in startup companies where, despite the 10% rule of thumb for startup success, 
these individuals still have a far better chance of being rewarded at a level commensurate 
with their skills.

ese may be hard truths to admit, but this is the reality in industry today. By definition, big 
companies tend not to innovate. e inability of managers to identify and reward talent causes 
most employees to do above average but far less than spectacular work—and without spectacular 
contributions, innovation will not occur. e most innovative individuals gravitate toward 
startups where, unlike the environments in large corporations, they tend to be rewarded in 
proportion to their accomplishments. 

ere exists a powerful opportunity to turn this reality to one’s advantage: the flip side of the 
trend is that any large company that does learn how to identify, retain, motivate, and reward its 
best engineers would position itself successfully as an innovator and would most surely dominate 
its industry. Witness Apple’s original emergence and recent re-emergence as a technology-
innovation company. Witness Google’s rise; their treatment of their engineers is legendary. 

So how can an organization become innovative? How can an executive successfully mandate 
creativity? ough one may not be able to guarantee creativity, there is much an executive can do 
to foster it, which is certainly an attainable goal and quite possibly “the least one can do” as the 
person in charge, as this is something of a sine qua non—an essential ingredient to the stew. e 
basics:

• Understand what motivates your engineers, and foster their creativity.

• Support the extraordinary efforts of innovative individuals by rewarding behavior 
appropriately, in the same manner as a startup company.

It comes down to recognizing and rewarding good design. Good design, the heart of 
innovation, is infinitely more valuable than money … you cannot buy your way into a good design 
just as you cannot buy the ability to innovate. e only way to buy innovation is to purchase an 
innovative company or hire an accomplished design team, and even then you risk losing all the 

4



innovative individuals you just hired if your corporate environment fails to reward them. Many 
purchased companies experience so-called “brain drains” as soon as the papers are signed; the 
purchasing company acquires the innovative company’s name and technology but not its 
innovators.

To be sustainable, technology innovation must be grown locally. To accomplish your goals of 
becoming and remaining a technology-innovation company, you must foster an environment that 
enables and rewards innovation and good design.

A DIVERSION: SOFTWARE GUYS VS. HARDWARE GUYS

Do not make the mistake of believing software engineers and hardware engineers to be 
merely interchangeable “engineers” with different job descriptions. e two personalities are quite 
different; the jobs they do (problems they solve) hardly have a thing in common, though their 
typical job descriptions certainly belie that fact; and it it not clear whether the personalities are 
molded by the problems they solve, or the personalities of the individuals attract them to solving 
certain problems.

Either way, if you expect to motivate and reward them, you had better understand them.
Traditionally, software engineers are Computer Scientists and hardware engineers are 

Electrical Engineers, and so the division begins in the education system and is continued in the 
workplace. In academia, these topics are taught in separate departments which are usually in 
separate colleges (i.e., they belong to different organizational & administrative hierarchies), and 
the different departments never interact. In industry, they are different groups usually housed at 
opposite ends of the building/campus, and they never interact.

e reason they do not interact is often animosity: in both industry and academia (note: I was 
a software guy in industry then went to academia and evolved into a hardware guy), software 
guys hate hardware guys, and vice versa. Software people consider hardware people unibrow 
neanderthals who believe that clubs, sharpened rocks, and C programming are paragons of high-
tech. Hardware people consider software people flighty, self-satisfied pansies (think Harvey 
Korman and Andréas Voutsinas as the bickering French noblemen in History of the World, Part I ) 
who complain far out of proportion to the useful work they do.

e funny thing is that both sides are right, but for the wrong reasons. e problem is that 
both sides are comparing apples to oranges—each evaluates the other against his own standards 
instead of evaluating the other against the other’s standards. is is almost always the type of 

5

http://en.wikiquote.org/w/index.php?title=Andr%C3%A9as_Voutsinas&action=edit&redlink=1
http://en.wikiquote.org/w/index.php?title=Andr%C3%A9as_Voutsinas&action=edit&redlink=1


cognitive disconnect and misunderstanding that occurs when a person dramatically 
underestimates the value and difficulty of another person’s work.

Make no mistake whatsoever: hardware people and software people are both extremely smart; 
they both solve extremely difficult and valuable problems. But they are apples and oranges; for 
instance, if you used a software approach to solve a hardware problem, you would get 
embarrassingly poor results—literally. You would probably be ridiculed (in good humor) by your 
peers for failing so miserably to address the problem. Similarly, if you used a hardware approach 
to solve a software problem, you would probably be ridiculed (in good humor) by your peers for 
failing so miserably to address the problem.

So what is going on here? At a high level, both build extremely complex systems, so it must 
be the qualities of those systems that creates the divide.

Characteristics of Software as an Engineered Product
First, let us develop a quick understanding of the problem area in which software engineers 

work: they build extremely large systems of interconnected functions, in which only a relative 
handful of the functions interact at a given time—meaning at any given point, only a fraction of 
the system (code) is operative. 

Software engineers are held to a standard of correctness that is between 99% and 99.9%—the 
general rule of thumb is that any given software program has a bug every 100–1000 lines of code, 
and this is considered an acceptable level of reliability. e truth is that the sheer complexity of 
these systems, and the richness of the functions and their interactions makes it extremely difficult 
to get a software product even to this level of correctness. 

e software engineer’s task is inherently creative—the software engineer is tasked to 
generate new concepts, new features, new behaviors … system-level capabilities that did not exist 
previously … and then to realize them in code. Often the hardest part is mapping these things, 
which rarely have words for adequate description, into existing software paradigms that 
inevitably lack appropriate power of expression.

Characteristics of Hardware as an Engineered Product
Let us extend this understanding to describe what hardware engineers do. Hardware 

engineers build extremely large systems of interconnected components, in which almost all 
components interact at a given time—meaning at any given point, almost all of the system is 
operative. If software is a gigantic, complex system of interacting functions, then hardware (e.g., 

6



computer hardware) is the equivalent of one, single, incredibly enormous function. All of it 
operates with itself, all the time—so, for example, if any of it is broken, the whole thing fails.

If hardware engineers were held up to the same standard of correctness as software engineers 
(one bug in every 1000 lines of code), then nearly all hardware systems would be completely 
inoperative. Hardware simply does not work if it is only 99.9% correct—it doesn’t work if it is 
99.999% correct. Semiconductor chips today have over 1 billion parts in them, and a single bug 
can bring the entire system down, because all of the hardware system is being used, all the time. 
Forget one bug in a hundred or a thousand; a hardware engineer doesn’t sleep well until the bugs 
are one in a million or better.

And Ne’er the Twain Shall Meet?
So that is the difference: the hardware engineer’s problem domain is design reliability, design 

correctness; the hardware engineer is paid to do it right. e software engineer’s problem domain 
is functionality; he is paid to do something cool and implement it passably well. e one is an 
engineer, a scientist; the other is an artist—cf. Hackers & Painters (Graham, 2004).

Both require smarts in enormous quantities, both contribute to a company’s bottom line, both 
are equal in value. e successful executive will manage to get each side of engineering to 
understand they will each benefit individually working together. e key is to recognize that both 
classes of individuals are extremely competitive, mostly with themselves (i.e., internally driven), 
and they thrive on solving difficult problems. Both hardware engineers and software engineers 
consider it far more personally rewarding to solve an “impossible” problem than to do just about 
anything else. It is mountain-climbing for the techie: a guy who scales a mountain everyone else 
said was impossible to climb returns with an enormous feather in his cap. Ditto with engineers 
solving problems that nobody else could. All it takes to get a really good engineer to work on a 
problem is for him to see how difficult it is: technical challenges to engineers are catnip to cats or 
bug-zappers to mosquitos. 

Importantly, technical challenges also happen to be significantly more engrossing to a 
hardware/software engineer than bashing the software/hardware department. 

Bottom line: these guys will work together famously if the problem is hard and the reward is 
significant. Innovation at the technical level is by definition a hard problem, so figuring out how 
to motivate ones engineers is not the hard part. e real issue for the executive is that of reward
—how do you convince your engineering staff that it is worth their while to go above and beyond 

7



on a daily basis? How do you convince the exceptionally talented that it is worth their while to 
work for you instead of themselves?

Now that the question (a two-sentence re-statement of the chapter’s Introduction) is put that 
way, it almost answers itself: you convince talented engineers to work exceptionally hard for you 
by structuring it so that they are working for themselves.

THE MOTIVATION AND REWARD OF ENGINEERS

e story of Apple’s Graphing Calculator application provides good insight: the software was 
developed by two contractors whose projects were terminated prematurely but who nonetheless 
remained for months afterward, unpaid, sneaking into the facility to finish (Avitzur, 2004). Here 
is some insight into the engineers’ motivation:

Why did Greg and I do something so ludicrous as sneaking into an eight-billion-dollar 
corporation to do volunteer work? Apple was having financial troubles then, so we joked that we 
were volunteering for a nonprofit organization. In reality, our motivation was complex. Partly, the 
PowerPC was an awesome machine, and we wanted to show off what could be done with it; in the 
Spinal Tap idiom, we said, “OK, this one goes to eleven.” Partly, we were thinking of the 
storytelling value. Partly, it was a macho computer guy thing—we had never shipped a million 
copies of software before. Mostly, Greg and I felt that creating quality educational software was a 
public service. 

I view the events as an experiment in subverting power structures. I had none of the traditional 
power over others that is inherent to the structure of corporations and bureaucracies. I had neither 
budget nor headcount. I answered to no one, and no one had to do anything I asked. Dozens of 
people collaborated spontaneously, motivated by loyalty, friendship, or the love of craftsmanship. 
We were hackers, creating something for the sheer joy of making it work.

e story might well be read by non-engineering types with a kind of horror; I don’t know. It 
is certainly read by engineers as a modern Robin Hood, as an example of heroes to honor and 
emulate. Engineers want to create superbly beautiful things; the less encumbered by bureaucracy, 
the better. As the story suggests, engineers will work ridiculous hours and go to absurd lengths to 
ensure that what they create is enviably good design; all they need is the proper motivation—and 
in this instance, the work itself was its own motivation.

8



A Page from the Startup Story
Additional insight comes from the rise and fall of tech startups. Consider the normal life-

cycle of a company that starts out as a technology innovator and, in this case, succeeds. Normally, 
startups begin as a small group of like-minded individuals who solve a problem that other people 
want solved enough to pay for the solution. is is innovation. Startups by definition must 
innovate, else they fail to thrive. Innovation is the one thing that allows them to compete with 
established companies.

At the outset, all tasks are handled by the individuals in this small group, but at some point 
the startup becomes successful enough to warrant additional employees to handle the non-
innovative tasks considered mundane by the innovators but that are nonetheless essential: 
answering the phones, manufacturing/packaging product, taking orders, handling customer 
service, providing quality assurance, maintaining and/or refining the existing product line, etc. 
e company’s focus, as measured by the number of man-hours spent doing the various tasks, 
shifts from innovating to staying profitable.  As soon as there are more people in the company 
spending more time doing anything other than innovating, the company has changed, and the 
shift is palpable to anyone there since the beginning.

Meanwhile the original innovators often do one of two things: they remain focused on 
innovation either by hiding themselves in their offices and developing the next-generation 
product, or by leaving the company to start up another. 

is is merely Startup 101, the life-cycle of nearly all high-tech startup companies; anyone 
who has worked at a successful startup recognizes the story. Historically, the life-cycle of the 
typical innovation-based company includes a slow-down in innovation and a resultant brain 
drain, but it is exactly this historical trend that one must overcome to remain innovative as an 
organization.

How is an executive to reverse this trend? Primarily by maintaining the innovative 
atmosphere associated with the origins of the company. However simple this may sound, there is 
no obvious mechanism; companies the world over are scrambling for a successful recipe. 

Many companies hire outside people; they bring in hired guns to do the really innovative 
work for a new design. is can prove successful, but it can also backfire if the existing staff feels 
passed over. In addition, it is just as sensitive to whimsy as relying upon your own staff for 
innovation if you have not instituted a culture and/or environment conducive to innovation: the 
contractor’s success or failure is effectively out of your control. 

9



It would be more prudent to maximize the probability of success by creating the right 
environment, whether contracted help is used or not. One approach would be to emulate the 
risk/reward structure of a startup environment directly, in a manner similar to “skunkworks” 
projects, combining the competition structure of skunkworks with the reward structure of 
startups. Such a reward structure, if implemented correctly, would appeal to the top engineers and 
is likely to attract top engineers from other firms as well.

e fundamental problem is identification: who is good? In a large engineering organization, 
the answer is non-trivial. To retain good engineers, a company must reward substance, not 
decoration. Nothing destroys R&D morale faster than good engineers knowing they are paid less 
than other engineers who don’t contribute to the bottom line. However, identifying substance is 
difficult, especially for non-technical managers and executives. Among other things, as 
mentioned earlier, engineers tend to be good at only one of the following two skills: their job and 
promoting themselves. Really good engineers are often quiet and undervalued by their company, 
so the question is how to identify those individuals. One answer is to let them do it themselves; 
the denizens of R&D know perfectly well who is good and who is not—let them identify the 
cream of the crop through their actions. is is a page taken directly from the startup story, where 
innovation comes from self-selected groups of extremely competent engineers.

A Structure for Identification and Reward: Venture Capitalism
Envision a skunkworks-type competition within R&D for the next-generation design 

wherein the design teams are self-selected, and the winning team is given a (small but significant) 
direct share of the product’s revenue. is emulates the startup environment very closely—by 
definition a team must innovate to succeed, and, all else being equal, the team that does the best 
job is rewarded in proportion to their efforts and skills. e reward is tied directly to revenue 
generated by the team, which mirrors the reward structure for salesmen and executives, who get 
paid to produce results. is form of incentive (tying one’s reward to the revenue generated) can 
be extremely effective at motivating people’s best efforts, so it surprising that, outside of the 
startup arena, it is rarely used to motivate innovation in engineering.

A few of the details in this arrangement are understated but quite important:

• e teams must be small. is is for two reasons; first, the productivity of a team is 
roughly inversely proportional to the team’s size (Brooks, 1995). Second, the share of 
revenue will be split among the entire team, so the larger the team, the smaller the 

10



individual reward. In the limiting case, one could reward the entire R&D department for 
a design success, but that would do little to motivate the most talented.

• e teams must be self-selected. is is the solution to the identification problem posed 
earlier: non-technical managers are nowhere near as adept at identifying design talent as 
are the engineers themselves. Faced with a non-trivial challenge, engineers will want none 
other than the best on their teams; all else would be dead wood slowing the team down.

• e reward must be real. For quite a while, top executives and salesmen have been paid 
staggering and highly publicized bonuses for their results (and, in many cases, even their 
failures). It is hard to get past the surreal juxtaposition of handing a $25 million bonus to 
an executive for his efforts and handing a congratulatory plaque to an engineering team 
for their efforts, if the engineering efforts affect the company’s bottom line just as 
significantly as the executive’s (for example, by developing a new product and thus a new 
source of revenue). is incredible disparity of reward is one of the primary reasons the 
exceptionally talented take matters into their own hands by leaving the corporate 
environment to start something up on their own.

• e reward must be tied to the product, not the company in general. e typical reward in 
high tech takes the form of stock options. While this is an appropriate motivator for new 
hires (like welcoming someone into your family), as a reward for technical innovation on 
a particular product, it becomes watered down with the size and scope of the company. 
Give an engineer a piece of the company, and the engineer will work hard, in a vague 
sense, to ensure the long-term success of the company. Promise an engineer a piece of his 
product’s revenue, and the engineer will work hard on the design and development of that 
product to ensure its financial success. e carrot dangled dictates the resulting behavior.

is identification/reward structure emulates the competitive engineering environment of the 
startup industry and, given an appropriate level of reward, would likely attract and retain the 
same uber-talented engineers as the high-tech startup industry. Interestingly, the self-selective 
creative aspect mirrors the environment at Disney under Bob Iger, where a six-fold increase in 
revenue resulted from supporting director-driven movie creation over management-driven movie 
creation (Economist, 19 April 2008). From an engineer’s perspective, this type of identification/
reward structure is ideal: it rewards talent and demands of a design team creativity married with 

11



competence—in all likelihood, for a design to succeed in this environment, the idea must be 
innovative, and it must work. ere is no better glove to throw down on an engineer’s desk.

If it strikes the reader as if the corporate entity essentially becomes a high-tech VC firm 
funding its own R&D staff, that is exactly what is proposed. Similar precedents exist in high-tech 
today, for instance Microsoft, Google, and Facebook spurring third-party innovation directly via 
millions in developer seed funding (Mills, 2008; Google, 2008; Farber, 2007). e only difference 
is that these examples show companies funding external innovation rather than internal 
innovation, which benefits the company indirectly rather than directly. Exploring an internally 
directed scenario would be worthwhile: the costs would be lower (payment is not speculative but 
upon success), the benefits more readily observed and quantified.

Moreover, this is arguably one of the only feasible solutions to the problem of identifying, 
retaining, motivating, and rewarding the industry’s best designers. As Brooks states, design is an 
individual process: “although many fine, useful software systems have been designed by 
committees and built by multipart projects, those software systems that have excited passionate 
fans are those that are the products of one or a few designing minds, great designers.” (Brooks, 
1987) Brooks goes further, and though he speaks of software design, the sentiment is just as 
applicable to hardware design and embedded systems design:

I think the most important single effort we can mount is to develop ways to grow great designers. 
No software organization can ignore this challenge. Good managers, scarce though they be, are no 
scarcer than good designers. Great designers and great managers are both very rare. Most 
organizations spend considerable effort in finding and cultivating the management prospects; I 
know of none that spends equal effort in finding and developing the great designers upon whom 
the technical excellence of the products will ultimately depend.

[Brooks 1987, reprinted in Brooks 1995]

As Graham suggests in the chapter’s opening quote above, were a company to adopt such 
tactics, it would most likely attract engineers who wanted to work especially hard. It would crush 
its competitors.

THE VALUE OF DESIGN

At this point we have addressed the issues of identifying and rewarding the company’s most 
talented and innovative engineers, but the original problem is not yet solved. e last issue is to 
reward the correct designer or design team—to recognize “good” design. e failure of many 

12



companies to capitalize on their own innovations (numerous historical examples spring to mind, 
including graphical user interfaces, laser printing, computer networks) suggests that, of the set, 
this is probably the most difficult problem to solve. 

Clearly, every industry, and every different product within that industry, will have its own set 
of metrics for success—qualities that make one design better than others—so it is impossible to 
be comprehensive here. In addition, most managers and executives already believe themselves 
good judges of design. Graham discusses some characteristics common to good designs, and at 
the very least his list (which should be read slowly) will provoke thought:

Good design is simple.
Good design is timeless.
Good design solves the right problem.
Good design is suggestive.
Good design is often slightly funny.
Good design is hard.
Good design looks easy.
Good design uses symmetry.
Good design resembles nature.
Good design is redesign.
Good design can copy.
Good design is often strange.
Good design happens in chunks.
Good design is often daring.

[from the essay “Taste for Makers,” which discusses each in detail, Graham 2004]

Among other things, good design is not the same as choosing something safe. A safe 
technology choice is typically a mediocre design chosen not to inspire but rather to avoid failure. 
Committees typically choose safe designs. Innovators typically choose good designs. e 
executive who asks for innovation must be mindful of what he wishes for, on multiple levels:

• A request for innovation is a tacit acceptance of risk. 

• Old habits die hard: engineers accustomed to choosing safe designs, and management 
that has historically rewarded safe design choices, will continue down their well-trodden 
paths until led elsewhere. 

13



• “Industry best practice” is not. Best, that is. It is by definition the technological state of 
the art, which in high tech is merely the industry-wide status quo, as any advances are 
quickly adopted by all; more importantly, it is what the innovator is attempting to beat. 

A Tale of ree Design Flows
Both hardware and software are extremely powerful technologies, but both leave much to be 

desired, creating a significant opportunity for innovation. In particular, each can learn from the 
other—there is plenty of room for software to be more reliable and for hardware to be more 
exotic. e engineering challenge is to do this without sacrificing the beneficial characteristics. 

is section describes the typical development processes in semiconductor design, embedded 
systems design, and software design, with the goal of giving the non-technical manager an idea 
of what is going on. e discussion leans toward what is arguably the easiest problem to solve: 
that of improving embedded systems’ reliability by importing principles of semiconductor design. 
e example illustrates that not all innovation produces new and better things; often it is just as 
valuable to produce new and better techniques.

VLSI Design. To begin with, consider VLSI design, the creation of semiconductor parts. Jan 
du Preez, at the time the President of Infineon Technologies North America, stated quite flatly 
that “semiconductor design is possibly the most complex thing that humans do.” (du Preez, 2002) 
It is also relatively expensive: a mask set for a cutting-edge process technology typically runs in 
the millions of dollars. Any design revision requires new masks, potentially a full set, so this is not 
a technology conducive to an iterative design-build-test-redesign development cycle. Designers 
do not build a chip to test their designs; they build the chip only once they are certain it will 
work. A design must work the first time around or, worst case, the second time around—more 
than that, and the project is scrapped and/or the company goes out of business.

14

Behavioral 
Design

Structural 
Design

Physical 
Design

Fabrication, 
Deployment

Logic (RTL)
Representation

Schematic
Diagram

Physical
Layout

Working 
Silicon

Logic Libraries, Synthesis Physical Libraries, P&R Design Rule Checks

Figure 1: VLSI design flow.



e methodology for VLSI design enables such tight tolerances on correctness. e design 
flow is characterized by strict design rules; the development tools enable a verifiable physical 
design, meaning that one can verify at the design stage, using CAD tools, whether or not the 
physical implementation will work. One need not build a chip to verify the chip’s design.

15

module fibonacci(clk, rst_l, out_w);

 input    clk, rst_l;
 output [7:0] out_w;

 reg  [7:0] src1, out;
 wire  [7:0] out_w = out;

 always @(posedge clk) 
 begin 
  if(!rst_l)
  begin
   src1 <= 1'd0;
   out <= 1'd1;
  end
 else
  begin
   src1 <= out_w;
   out <= src1 + out_w;
  end
 end

endmodule

Figure 2: Example behavioral design.

Figure 3: Example structural design.



A typical design flow is illustrated in Figure 1. e engineer begins with a very high-level 
representation of the final chip: a behavioral design which looks very much like a piece of 
software. is specification indicates what the chip is supposed to do, how it is supposed to 
behave, as opposed to what circuits to use. It is analogous to a blueprint for a building, which 
typically ignores such implementation details as size of nails, chemical composition of brick & 
mortar, species of wood, etc. e specification is a logic representation, often called an “RTL” 
specification, for “register-transfer level,” indicating that it specifies what data and commands are 
transferred and processed, at what time, and stored in what registers. 

Figure 2 illustrates an example behavioral design: a simple sequential state machine that 
produces the first few numbers in the Fibonacci sequence. e code is Verilog, a hardware 
description language (HDL) with a C-like syntax. e specifics of the design matter less than the 
fact that what will ultimately be realized in hardware begins in software, specified at a level that is 
human-readable and human-debuggable (a software engineer who has never built hardware 
could figure out how it works). As Brooks asserts (1987), the hardest part of designing a product 
is “arriving at a complete and consistent specification, and much of the essence of building [the 
product] is in fact the debugging of the specification.” Hardware design thus begins with a 
behavioral design, a form of specification that is far easier to develop and debug than is hardware 
itself. 

e behavioral design is run through a CAD tool that synthesizes a structural design by 
replacing various functions with their circuit-level equivalents taken from various logic libraries 

16

Figure 4: Example physical layouts, one identifying the larger circuit structures such as adders and D flip-flops (top), 
the other showing detail down to the transistor level (bottom).



(e.g., replacing each instance of the ‘+’ operator with an n-bit wide adder, each instance of the ‘<<’ 
operator with an n-bit shifter, etc.). e format of the structural design is a schematic diagram, 
e.g., the schematic in Figure 3, which illustrates the netlist (circuit) produced from the behavioral 
code in Figure 2. e synthesis tools can be parameterized to choose between circuit 
implementations that are characterized as fast and those that are characterized as small, but that 
is generally the limit to their abilities. eir main benefit is the saving of valuable engineering 
time: the tools provide a reasonable first cut at a low level design, one which the engineer will 
further optimize by hand. 

e optimized structural design is run through another CAD tool that replaces the logic-
level structures with equivalent physical layouts taken from a library, places those structures on 
the chip, and routes the signals that connect them. What is produced is a design that looks on the 
computer screen exactly like the chip that will be fabricated: a vast Mondrian on black. Figure 4 

17

Figure 5: Fabricated VLSI die with the example circuit from Figures 1–4 indicated.



illustrates the layout produced from the netlist shown in Figure 3. e figure presents two 
layouts, one showing more detail than the other. e bottom layout, showing the transistor-level 
detail, is exactly what the design will look like when fabricated in silicon.

Before the design can be fabricated, it must pass a number of tests (e.g., electrical checks, 
design rule checks, etc.) that ensure the part as built will faithfully reproduce the design. ese 
tests ensure that each level of design (behavioral, structural, physical) corresponds exactly to the 
other, that whatever physical connections are implied at one level of design are implemented in 
another, and that all electrical connections existing at the physical level are anticipated by the 
higher-level designs. e design rules, if followed, further guarantee no unanticipated interactions 
between components. For example, wires spaced too closely might short out, creating a physical 
connection where none was intended; transistors placed too near one another can influence each 
other similarly. e end result of all the testing is a reasonable guarantee that, when the part is 
fabricated, any mistakes found in the implementation will be the result of a faulty specification 
(i.e., behavioral design) and not the fault of fabrication. Each level of the design (behavioral, 
structural, physical) can be tested thoroughly with CAD tools, and as each successive design 
approaches more closely the final physical form, so, too, the tests that are applied to the designs 
mimic more closely the tests one would perform on an actual chip, the more realistic and 

18

Embedded 
Application

Algorithm 
(Software)

Integration, 
Deployment

Functional 
Specification/s

Working 
System?

HW/SW Co-Design Synthesis Models [ open problem ]

Figure 6: Embedded-systems design flow.

Architecture 
(Hardware)

Communication  
& Packaging

Component 
Design/Test

Component 
Design/Test

Component 
Design/Test

Component 
Design/Test



convincing the results, and the more confident the engineer that the design will work when 
fabricated.

Figure 5 shows a photo-micrograph of the fabricated die, with the example layout circled. e 
fabricated part was fully functional.

Note that the reason digital VLSI design is verifiable is because of its limited palette: a digital 
designer can use wires and transistors, and that is all. is was considered extremely limiting 
when the concept was introduced in the late 1970s by Carver Mead and Lynn Conway (Mead & 
Conway, 1979), as designers had been comfortable designing digital functions using all manners 
of devices, processing steps, and process technologies that were incompatible with each other and 
all essentially analog in terms of their analysis. e introduction of a limited palette coupled with 
strict design rules enabled the analysis and verification of designs to be relegated to CAD tools, 
thereby enabling significantly more sophisticated designs. Previously, designers could put only a 
handful of devices on one chip—not due to space limitations but instead due to reliability. It was 
only after the introduction of VLSI design rules that the exponential growth in the 
semiconductor industry began.

Embedded Systems Design. To compare with the VLSI design flow, the design flow for 
embedded systems is shown in Figure 6. An embedded application is specified at a functional 
level (what the application does, as opposed to how it does it), using methods that range from the 
informal to the formal: e.g., prose descriptions, block diagrams, pseudocode, state machines, 
mathematical expressions, MatLab code, UML diagrams. 

e first step is to partition the high-level application into the various blocks that will 
implement it, for instance hardware and software. An entire field of study is devoted to this 
partitioning problem, called hardware/software co-design, in which the partitioning is 
automated. An additional component that is often overlooked is the physical packaging of the 
components and mechanisms that allow the components to interact (e.g., circuit boards, multi-
chip modules, 3D stacking, computer enclosures, switches, wired and wireless networks and their 
protocols, etc.). Often the choice of packaging and communication mechanisms dictates whether 
desired functions can be implemented.

After choosing the components to constitute the application, engineers build and test each 
non-COTS component. For instance, software modules must be written, ASICs developed and 
fabricated (using the VLSI design flow described earlier), actuators and sensors developed, metal/
wood/plastic parts machined and assembled, circuit boards manufactured and assembled. 

19

http://en.wikipedia.org/wiki/Lynn_Conway
http://en.wikipedia.org/wiki/Lynn_Conway


Synthesis models for some of these components exist—meaning that, given a high-level 
specification, a CAD tool can produce a low-level design for the desired part (as in the VLSI 
steps before)—but these synthesis models are not nearly as well developed as those for 
semiconductor design, so much of this level of development is done by hand.

An important fact is that these individual components are designed, built, and tested in 
isolation from each other. is is fairly representative—e.g., in the design of automobile control 
networks it is not unusual for each component (powertrain, spark-plug ignition, anti-lock brake 
system, stability augmentation system) to be designed and built by a separate group, division, or 
even company whose sole focus is that control system. 

When the components are ready, they are integrated into a complete system, the first testable 
prototype. In many cases, this is the first time a full system test can be performed, so it is no 
surprise that it is an open question whether or not the system will indeed work when turned on. 
Whereas the VLSI design flow is characterized by strict design rules that guarantee a degree of 
system-level verification, the embedded-systems design flow is characterized by a complete lack 
of design rules and the use of ad hoc methods (at best) for system-level verification. 

is is an obvious candidate for technology innovation. e integration of complex 
heterogeneous components is a stumbling block for system design: one cannot guarantee the 
correctness of a system by verifying components in isolation—the entire system must be verified 
as a whole. Yet component-level design and verification is typical practice in building modern-
day embedded systems; system-level testing is frequently done only when the already-built 

20

Specification 
(Algorithms)

Integration, 
Deployment

Working 
System?

[ open problem ]

Figure 7: Software design flow.

Component 
Design/Test

Component 
Design/Test

Component 
Design/Test



components are assembled into a working system. e practice leaves latent design bugs that are 
too subtle to be uncovered by physical tests and that manifest themselves after deployment. For 
example, the software loops in an automobile control system are usually designed and tested in 
isolation, but a recent trend in the industry is to time-share these loops on a single 
microprocessor. In this scenario, the implicit assumption of independence is no longer valid, and, 
now that there can be direct interaction between the loops, unintended (and untested) behaviors 
can arise. Another example: a recently proposed redesign of the Blackhawk helicopter replaced 
the existing electrical wiring of the controller-area network with a fibre-optic channel. ough 
the new optical network increased bandwidth tremendously, the increase in packet latency that 
was required by the optical network-interface hardware made it impossible to design a stability 
and control augmentation system that would meet the desired specifications.

e good news is an increased trend of building embedded systems in a manner similar to 
semiconductor devices, i.e. entirely in software—for example Fiat’s rapid development of the 500 
(Economist, 26 April 2008). Such a CAD-oriented method is far from standard in most 
industries, and so any company that can adopt this technique stands to improve its time to 
market and reduce design bugs discovered late in the development cycle.

Software Design. e third design flow, that of software development, is shown in Figure 7. 
e diagram is the software subset of the embedded-systems design flow, and, like embedded 
systems in general, software design is largely done by hand: the components are designed and 
developed by hand, and they are tested in isolation before being integrated into the main 
codebase. is presents problems for components developed by different people or different 
organizations, as it heightens the importance of correctly and unambiguously specifying the 
interfaces between components. Witness the loss of the 1999 Mars probe (Oberg, 1999), in 
which the technical failure was due to a mis-match of measurement units used by different 
development teams in different countries. 

What makes improving software development challenging is that, unlike hardware 
development, software is not particularly amenable to CAD-tool support (Brooks, 1987). us, 
improving the reliability of hardware systems and embedded systems is the relatively low hanging 
fruit, and improving the reliability of software is still a long-term goal and a heavily researched 
area.

21



Emergent Paradigms: Manufacturing as a Service, Design as an End Product
Recent trends would seem a boon for companies that want to focus more attention on 

technology innovation; they enable a company to spend less capital on infrastructure and less 
attention on manufacturing. Rather than exploiting these trends merely to cut costs, an 
organization could instead spend the freed capital and attention on R&D and quality assurance.

In every era, manufacturing has been pushed to the fringes of society, away from living and 
communal spaces. Factories have been moved away from dense urban areas; manufacturing has 
been exported to the third world. At the same time, design has never been pushed away; design 
has never been exported, except to the detriment of the exporter. Design is the core intellectual 
exercise that can define a company, an industry, a culture, a nation. Assuming you consider 
yourself an innovator, if you give design over to a third party, you have given away your reason for 
being—anything else you bring to the table can be bought; all else but design is a commodity. 

e interesting result is manufacturing as a service, a phenomenon increasing in both 
visibility and popularity. Traditionally, capital expenses are required to enter a manufacturing 
industry: before you can build widgets, you must first build a factory that can build widgets. One 
consequence of the Internet and the international competition it has enabled (Friedman, 2005) is 
the number of plants offering custom manufacturing as a retail service. For instance, circuit-board 
manufacturers accept customer designs uploaded via the web; they manufacture the boards and 
perform assembly as well—i.e., given bills of materials they will return a fabbed and completely 
populated board and can obtain all COTS parts directly from distributors. Some of the world’s 
largest semiconductor companies, such as TSMC, Taiwan Semiconductor Manufacturing 
Company, focus on building other people’s designs, not their own. Similar services are available 
for CNC routing, plastics, metal working, final assembly, etc. 

Due to this phenomenon, the traditional capital-expense barrier to entry no longer exists: one 
can “manufacture” a new product line that is manufactured entirely by third parties. Certainly the 
per-unit costs are higher, but the capital startup cost is gone; that means the cost exposure of 
testing the waters with a new product, even in a new industry, is effectively nil (it is only an issue 
for experiments that fail so miserably and so publicly that negative PR hurts the company’s other 
products). 

is now enables a focus on design, as an end product in and of itself: anything your 
organization can design, someone out there can and will manufacture for you, and the net has not 
only enabled this but also simplified tremendously the search for willing manufacturers.

22



e obvious conclusion is that this empowers startup companies to compete in industries that 
were previously out of reach. Numerous examples can be found in the semiconductor industry 
now that design firms need not spend the several billion dollars required to build a fab: Silicon 
Valley is bursting with companies offering intellectual property, rather than hard goods, as their 
value added. 

e less obvious conclusion is that it also enables larger companies to try the same trick: to 
explore new products or even new industries outside the company’s core area that would have 
been deemed too risky had the startup costs included capital expenses. With deeper pockets, a 
large company should be able to cast a wider net than a startup—in effect, to spread the risk and 
increase the likelihood of success by emulating the effect of several startups in several different 
areas or by trying several different approaches in the same area. 

Again, if this sounds like the approach that venture capitalists take, it is exactly that, and the 
logic behind the behavior is exactly the same. Many innovators, after starting up one or more 
successful high-tech companies, move into the VC industry; their nest egg, capital earned from 
the sale of their startups, is more likely to grow if it is put into more than one basket.

e lesson to take away is simple but powerful. Innovation is like throwing darts, in that each 
shot may or may not hit the mark, even for an accomplished thrower. e most reliable way to 
make a bullseye is to take multiple attempts. e most reliable way to make money in the startup 
industry, given a fixed amount of attention, time, and energy, is not to start up a company but to 
fund startup companies. Similarly, an executive that seeks innovation will maximize his chances 
of success by becoming a de facto VC—by treating his engineering staff as a collection of would-
be startup companies.

23



REFERENCES

Ron Avitzur. “e Graphing Calculator Story.” 2004. 
http://www.pacifict.com/Story

Frederick Brooks. e Mythical Man-Month. Addison-Wesley. 1995.
Frederick Brooks. “No silver bullet—essence and accidents of software engineering,” IEEE 

Computer, vol. 20, no. 4, pp. 10–19. April 1987.
Peter Burrows. “e seed of Apple’s innovation,” BusinessWeek, Voices of the Innovators. October 

12, 2004. 
http://www.businessweek.com/bwdaily/dnflash/oct2004/nf20041012_4018_db083.htm

Jan du Preez. Personal communication. 2002. 
Economist. “Lessons from Apple: What other companies can learn from California's master of 

innovation,” e Economist. (on-line from the print edition) June 7, 2007. 
http://www.economist.com/opinion/displaystory.cfm?story_id=9302662

Economist. “Disney: Magic restored,” e Economist. April 19, 2008.
Economist. “Fiat: Rebirth of a carmaker,” e Economist. April 26, 2008.
Dan Farber.“Facebook investors start $10 million fund for developers,” Between the Lines (ZDNet 

Blogs). September 17th, 2007.
http://blogs.zdnet.com/BTL/?p=6286

omas Friedman. e World Is Flat: A Brief History of the Twenty-First Century. Farrar, Straus 
and Giroux. 2005.

Google. “Android developer challenge.” 2008.
http://code.google.com/android/adc.html

Paul Graham. Hackers & Painters: Big Ideas from the Computer Age. O’Reilly Media: Sebastopol 
CA. 2004.

Lev Grossman. “How Apple does it,” Time.com. October 16, 2005. 
http://www.time.com/time/magazine/article/0,9171,1118384,00.html

Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley. 1979.
Elinor Mills. “Microsoft eyes health care app developers with $3 million fund,” C/Net News.com. 

February 24, 2008.
http://www.news.com/8301-10784_3-9877656-7.html

24

http://www.pacifict.com/Story
http://www.pacifict.com/Story
http://www.businessweek.com/bwdaily/dnflash/oct2004/nf20041012_4018_db083.htm
http://www.businessweek.com/bwdaily/dnflash/oct2004/nf20041012_4018_db083.htm
http://www.economist.com/opinion/displaystory.cfm?story_id=9302662
http://www.economist.com/opinion/displaystory.cfm?story_id=9302662
http://blogs.zdnet.com/BTL/?p=6286
http://blogs.zdnet.com/BTL/?p=6286
http://blogs.zdnet.com/BTL/?p=6286
http://blogs.zdnet.com/BTL/?p=6286
http://en.wikipedia.org/wiki/Thomas_L._Friedman
http://en.wikipedia.org/wiki/Thomas_L._Friedman
http://code.google.com/android/adc.html
http://code.google.com/android/adc.html
http://www.time.com/time/magazine/article/0,9171,1118384,00.html
http://www.time.com/time/magazine/article/0,9171,1118384,00.html
http://www.news.com/8301-10784_3-9877656-7.html
http://www.news.com/8301-10784_3-9877656-7.html


Cait Murphy. “America’s most admired companies 2008: 10 Most admired for innovation,” 
CNNMoney.com. 2008.
http://money.cnn.com/galleries/2008/fortune/0803/gallery.innovation.fortune/index.html

James Oberg. “Why the Mars probe went off course,” IEEE Spectrum, vol. 36, no. 12, pp. 34–39. 
December 1999.

25

http://money.cnn.com/magazines/fortune/mostadmired/2008/
http://money.cnn.com/magazines/fortune/mostadmired/2008/
http://money.cnn.com/galleries/2008/fortune/0803/gallery.innovation.fortune/index.html
http://money.cnn.com/galleries/2008/fortune/0803/gallery.innovation.fortune/index.html
http://money.cnn.com/galleries/2008/fortune/0803/gallery.innovation.fortune/index.html
http://money.cnn.com/galleries/2008/fortune/0803/gallery.innovation.fortune/index.html

