
High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

CS-590.26, Spring 2014!

High-Speed Memory Systems:
Architecture and Performance Analysis!

Coherence  
and Consistency

�1

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

The Problem is Multi-Fold!
Cache Consistency (taken from web-cache community)!

In the presence of a cache,  
reads and writes behave (to a first order)  

no differently than if the cache were not there!

Three main issues:!
• Consistent with backing store!
• Consistent with self!
• Consistent with other clients of same backing store

�2

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w/ Backing Store!
For example, write-through vs. write-back!

Write buffer commonly used 
in write-through caches:

�3

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 219

4.1.2 Delayed Write, Driven By the Cache
This policy delays writing the data to the backing

store until later, where “later” is determined by the
cache. There are some obvious triggers.

Confl ict-Driven Update
In this policy, the data written into the cache is

written to the backing store when there is a cache
confl ict with that block, i.e., data from a written block
(i.e., a “dirty” block) is written to the backing store
when another block of data is brought into the cache,
displacing the dirty block. This is called the write-
back policy.

There are some obvious benefi ts to using a write-
back policy. The main things are data coalescing
and reduction of write traffi c, meaning that often-
times, an entire block of data will be overwritten,
requiring multiple write operations (a cache block
is usually much larger than the granularity of data
that a load/store instruction handles). Coalescing
the write data into a single transfer to the backing
store is very benefi cial. In addition, studies have
found that application behavior is such that writes
to one location are frequently followed by more

writes to the same location. So, if a location is going
to be overwritten multiple times, one should not
bother sending anything but the fi nal version to the
backing store.

Nonetheless, write-back causes problems in a
multi-user scenario (e.g., multiprocessors). Some-
times you will want all of those little writes to the
same location to be propagated to the rest of the sys-
tem so that the other processors can see your activ-
ity. One can either return to a write-through policy,
or one can create additional update scenarios driven
by the backing store, i.e., in the case that the data is
needed by someone else. This is discussed briefl y in
the next section and in more detail in Section 4.3.

Capacity-Driven Update
Note that there exist caches in which the concept of

cache confl icts is hazy at best. Many software caches
do not implement any organizational structure anal-
ogous to cache sets, and waiting to write data to the
backing store until the cache is totally full (an event
that would be analogous to a cache confl ict) may
be waiting too late. Such a cache might instead use
a capacity-driven update. In this sort of scenario, for

Backing Store

Write Buffer/Cache

CPU

$

CPU

$

C
P

U

$

CPU

$

C
P

U

$
Backing Store

(a) (b)

FIGURE 4.1: The use of write buffers and write caches in a write-through policy. (a) The write buffer or write cache is physi-
cally part of the cache, but logically part of the backing store. (b) Shows the implication as more caches become clients of the
backing store.

ch04_P379751.indd Sec2:219ch04_P379751.indd Sec2:219 8/7/07 1:36:23 PM8/7/07 1:36:23 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w Self!
Virtual cache synonym problem & hardware solutions

�4

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 221

locations in a cache, requiring careful cache manage-
ment to keep data inconsistencies from occurring.

It becomes clear that this feature—shared mem-
ory—breaks the cache model of virtual memory. If
a single datum is allowed to have several equivalent
names, then it is possible for the datum to reside in
a cache at multiple locations. This can easily cause
inconsistencies, for example, when one writes val-
ues to two different locations that map to the same
datum. It is for this reason that virtual memory is
described as a mapping between two namespaces;
one must remember this when dealing with virtual
caches. As long as there is a one-to-one mapping
between data and names, no inconsistencies can
occur, and the entire virtual memory mechanism
behaves no differently than a traditional cache hier-
archy. Thus, virtual caches can be used without fear
of data inconsistencies. As soon as shared memory
is introduced, the simple cache model becomes
diffi cult to maintain, because it is very convenient
for an operating system to allow one-to-many
namespace mappings. However, as we will see in
later chapters, there are many tricks one can play
to keep the cache model and still support shared
memory.

The Consistency Problem of Virtual Caches
A virtually indexed cache allows the processor

to use the untranslated virtual address as an index.
This removes the TLB from the critical path, allow-
ing shorter cycle times and/or a reduced number of
pipeline stages. However, it introduces the possibil-
ity of data-consistency problems occurring when two
processes write to the same physical location through
different virtual addresses; if the pages align differ-
ently in the cache, erroneous results can occur. This
is called the virtual cache synonym problem [Good-
man 1987]. The problem is illustrated in Figure 4.2;
a shared physical page maps to different locations
in two different process-address spaces. The virtual
cache is larger than a page, so the pages map to differ-
ent locations in the virtual cache. As far as the cache
is concerned, these are two different pages, not two

different views of the same page. Thus, if the two pro-
cesses write to the same page at the same time, using
two different names, then two different values will be
found in the cache.

Hardware Solutions The synonym problem has
been solved in hardware using schemes such as dual
tag sets [Goodman 1987] or back-pointers [Wang
et al. 1989], but these require complex hardware and
control logic that can impede high clock rates. One
can also restrict the size of the cache to the page size
or, in the case of set-associative caches, similarly
restrict the size of each cache bin (the size of the cache
divided by its associativity [Kessler & Hill 1992]) to the
size of one page. This is illustrated in Figure 4.3; it is
the solution used in many desktop processors such
as various PowerPC and Pentium designs. The dis-
advantages are the limitation in cache size and the
increased access time of a set-associative cache. For
example, the Pentium and PowerPC architectures

Address Space A

BAddress Space B

Physical
Memory

Virtual
Cache

FIGURE 4.2: The synonym problem of virtual caches. If two
processes are allowed to map physical pages at arbitrary loca-
tions in their virtual-address spaces, inconsistencies can occur
in a virtually indexed cache.

ch04_P379751.indd Sec2:221ch04_P379751.indd Sec2:221 8/7/07 1:36:24 PM8/7/07 1:36:24 PM

222 Memory Systems: Cache, DRAM, Disk

must increase associativity to increase the size of
their on-chip caches, and both architectures have
used 8-way set-associative cache designs. Physically
tagged caches guarantee consistency within a single
cache set, but this only applies when the virtual syn-
onyms map to the same set.

Software Solutions Wheeler and Bershad describe
a state-machine approach to reduce the number
of cache fl ushes required to guarantee consistency
[1992]. The mechanism allows a page to be mapped
anywhere in an address space, and the operating sys-
tem maintains correct behavior with respect to cache
aliasing. The aliasing problem can also be solved
through policy, as shown in Figure 4.4. For example,
the SPUR project disallowed virtual aliases altogether
[Hill et al. 1986]. Similarly, OS/2 locates all shared
segments at the same address in all processes [Deitel
1990]. This reduces the amount of virtual memory
available to each process, whether the process uses
the shared segments or not. However, it eliminates
the aliasing problem entirely and allows pointers to

be shared between address spaces. SunOS requires
shared pages to be aligned on cache-size boundar-
ies [Hennessy & Patterson 1990], allowing physical
pages to be mapped into address spaces at almost
any location, but ensuring that virtual aliases align in
the cache. Note that the SunOS scheme only solves
the problem for direct-mapped virtual caches or
set-associative virtual caches with physical tags;
shared data can still exist in two different blocks of
the same set in an associative, virtually indexed, vir-
tually tagged cache. Single address space operating
systems such as Opal [Chase et al. 1992a, 1992b] or
Psyche [Scott et al. 1988] solve the problem by elimi-
nating the concept of individual per-process address
spaces entirely. Like OS/2, they defi ne a one-to-one
correspondence of virtual to physical addresses and
in doing so allow pointers to be freely shared across
process boundaries.

Combined Solutions Note that it is possible, using
a segmented hardware architecture and an appropriate
software organization, to solve the aliasing problem.

Address Space A

Address Space B

Physical
Memory

Direct-Mapped
Virtual Cache

Set-Associative
Virtual Cache

(w/ physical tags)

OR

FIGURE 4.3: Simple hardware solutions to page aliasing. If the cache is no larger than the page size and direct-mapped, then no
aliasing can occur. Set-associative caches can be used, provided they have physical tags.

ch04_P379751.indd Sec2:222ch04_P379751.indd Sec2:222 8/7/07 1:36:24 PM8/7/07 1:36:24 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w Self!
Operating system solutions to aliasing problem

�5

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 223

The discussion is relatively long, so we have placed it
in Chapter 31, Section 31.1.7, “Perspective: Segmented
Addressing Solves the Synonym Problem.”

An important item to note regarding aliasing and
set-associative caches is that set associativity is usu-
ally a transparent mechanism (the client is not usually
aware of it), and the cache is expected to guarantee
that the implementation of set associativity does
not break any models. Thus, a set-associative cache
cannot use virtual tags unless the set associativity is
exposed to the client. If virtual tags are used by the
cache, the cache has no way of identifying aliases to
the same physical block, and so the cache cannot
guarantee that a block will be unique within a set—
two different references to the same block, using dif-
ferent virtual addresses, may result in the block being
homed in two different blocks within the same set.

Perspective on Aliasing
Virtual-address aliasing is a necessary evil. It is use-

ful, yet it breaks many simple models. Its usefulness
outweighs its problems. Therefore, future memory-
management systems must continue to support it.

Virtual-Address Aliasing Is Necessary Most of
the software solutions for the virtual cache synonym
problem address the consistency problem by limit-
ing the choices where a process can map a physical
page in its virtual space. In some cases, the number
of choices is reduced to one; the page is mapped at
one globally unique location or it is not mapped at
all. While disallowing virtual aliases would seem to be
a simple and elegant way to solve the virtual-cache-
consistency problem, it creates another headache for
operating systems—virtual fragmentation.

FIGURE 4.4: Synonym problem solved by operating system policy. OS/2 and the operating system for the SPUR processor guar-
antee the consistency of shared data by mandating that shared segments map into every process at the same virtual location.
SunOS guarantees data consistency by aligning shared pages on cache-size boundaries. The bottom few bits of all virtual page
numbers mapped to any given physical page will be identical, and the pages will map to the same location in the cache. Note that
this works best with a direct-mapped cache.

Address Space A

Address Space B

Physical
Memory

Virtual
Cache

Address Space A

Address Space B

Physical
Memory

Virtual
Cache

(a) SPUR and OS/2 solutions (b) SunOS solution

ch04_P379751.indd Sec2:223ch04_P379751.indd Sec2:223 8/7/07 1:36:25 PM8/7/07 1:36:25 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w Self!
Segmentation as a solution to the aliasing problem

�6

Chapter 31 VIRTUAL MEMORY 899

pages to physical pages is one-to-one, there are no
virtual cache synonym problems.

When the synonym problem is eliminated, there is
no longer a need to fl ush a virtual cache or a TLB for
consistency reasons. The only time fl ushing is required
is when virtual segments are remapped to new physi-
cal pages, such as when the operating system runs
out of unused segment identifi ers and needs to reuse
old ones. If there is any data left in the caches or TLB
tagged by the old virtual address, data inconsistencies
can occur. Direct Memory Access (DMA) also requires
fl ushing of the affected region before a transaction, as
an I/O controller does not know whether the data it
overwrites is currently in a virtual cache.

The issue becomes one of segment granularity. If
segments represent the granularity of sharing and data
placement within an address space (but not the gran-
ularity of data movement between memory and disk),
then segments must be numerous and small. They
should still be larger than the L1 cache to keep the criti-
cal path between address generation and cache access
clear. Therefore, the address space should be divided
into a large number of small segments, for instance,
1024 4-MB segments, 4096 1-MB segments, etc.

Disjunct Page Table
Figure 31.15 illustrates an example mechanism. The

segmentation granularity is 4 MB. The 4-GB address
space is divided into 1024 segments. This simplifi es

the design and should make the discussion clear.
A 4-byte PTE can map a 4-KB page, which can, in turn,
map an entire 4-MB segment. The “disjunct” page
table organization uses a single global table to map
the entire 52-bit segmented virtual-address space yet
gives each process-address space its own addressing
scope. Any single process is mapped onto 4 GB of this
global space, and so it requires 4 MB of the global table
at any given moment (this is easily modifi ed to sup-
port MIPS-style addressing in which the user process
owns only half the 4 GB [Kane & Heinrich 1992]). The
page table organization is pictured in Figure 31.16. It
shows the global table as a 4-TB linear structure at the
top of the global virtual-address space, composed of
230 4-KB PTE pages that each map a 4-MB segment. If
each user process has a 4-MB address space, the user
space can be mapped by 1024 PTE pages in the global
page table. These 1024 PTE pages make up a user
page table, a disjunct set of virtual pages at the top
of the global address space. These 1024 pages can be
mapped by 1024 PTEs—a collective structure small
enough to wire down in physical memory for every
running process (4 KB, if each is 4 bytes). This struc-
ture is termed the per-user root page table in Figure
31.16. In addition, there must be a table for every pro-
cess containing 1024 segment IDs and per-segment
protection information.

Global Virtual Space

Process A Process B Process C

Physical Memory

NULL
(segment only
partially-used)

Paged
Segment

FIGURE 31.14: The use of segments to provide virtual-address
aliasing.

TLB and
Page Table

32-bit Effective Address

Segno (10 bits) Segment & Page Offsets (22 bits)

Segment Registers

Segment & Page Offsets (22 bits)Segment ID (30 bits)

52-bit Virtual Address

Cache

FIGURE 31.15: Segmentation mechanism used in discussion.

ch31_P379751.indd 899ch31_P379751.indd 899 8/8/07 3:30:10 PM8/8/07 3:30:10 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w Self!
Segmentation as a solution to the aliasing problem

�7

Chapter 31 VIRTUAL MEMORY 899

pages to physical pages is one-to-one, there are no
virtual cache synonym problems.

When the synonym problem is eliminated, there is
no longer a need to fl ush a virtual cache or a TLB for
consistency reasons. The only time fl ushing is required
is when virtual segments are remapped to new physi-
cal pages, such as when the operating system runs
out of unused segment identifi ers and needs to reuse
old ones. If there is any data left in the caches or TLB
tagged by the old virtual address, data inconsistencies
can occur. Direct Memory Access (DMA) also requires
fl ushing of the affected region before a transaction, as
an I/O controller does not know whether the data it
overwrites is currently in a virtual cache.

The issue becomes one of segment granularity. If
segments represent the granularity of sharing and data
placement within an address space (but not the gran-
ularity of data movement between memory and disk),
then segments must be numerous and small. They
should still be larger than the L1 cache to keep the criti-
cal path between address generation and cache access
clear. Therefore, the address space should be divided
into a large number of small segments, for instance,
1024 4-MB segments, 4096 1-MB segments, etc.

Disjunct Page Table
Figure 31.15 illustrates an example mechanism. The

segmentation granularity is 4 MB. The 4-GB address
space is divided into 1024 segments. This simplifi es

the design and should make the discussion clear.
A 4-byte PTE can map a 4-KB page, which can, in turn,
map an entire 4-MB segment. The “disjunct” page
table organization uses a single global table to map
the entire 52-bit segmented virtual-address space yet
gives each process-address space its own addressing
scope. Any single process is mapped onto 4 GB of this
global space, and so it requires 4 MB of the global table
at any given moment (this is easily modifi ed to sup-
port MIPS-style addressing in which the user process
owns only half the 4 GB [Kane & Heinrich 1992]). The
page table organization is pictured in Figure 31.16. It
shows the global table as a 4-TB linear structure at the
top of the global virtual-address space, composed of
230 4-KB PTE pages that each map a 4-MB segment. If
each user process has a 4-MB address space, the user
space can be mapped by 1024 PTE pages in the global
page table. These 1024 PTE pages make up a user
page table, a disjunct set of virtual pages at the top
of the global address space. These 1024 pages can be
mapped by 1024 PTEs—a collective structure small
enough to wire down in physical memory for every
running process (4 KB, if each is 4 bytes). This struc-
ture is termed the per-user root page table in Figure
31.16. In addition, there must be a table for every pro-
cess containing 1024 segment IDs and per-segment
protection information.

Global Virtual Space

Process A Process B Process C

Physical Memory

NULL
(segment only
partially-used)

Paged
Segment

FIGURE 31.14: The use of segments to provide virtual-address
aliasing.

TLB and
Page Table

32-bit Effective Address

Segno (10 bits) Segment & Page Offsets (22 bits)

Segment Registers

Segment & Page Offsets (22 bits)Segment ID (30 bits)

52-bit Virtual Address

Cache

FIGURE 31.15: Segmentation mechanism used in discussion.

ch31_P379751.indd 899ch31_P379751.indd 899 8/8/07 3:30:10 PM8/8/07 3:30:10 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w Self!
ASID remapping

�8

Chapter 31 VIRTUAL MEMORY 905

PA-RISC’s table or the 8-way PTE cache of
the PowerPC architecture. One possible
implementation of the class is shown in
 Figure 31.21.
Single-Owner, Multiple-ID This archi-
tecture is not segmented but has multiple
protection IDs associated with each process
and/or each page. The PA-RISC can be used
in this manner. If multiple IDs are associ-
ated with each page, each TLB entry could
be shared by all the processes with which
the page is associated. A TLB entry would
have several available slots for protection
IDs, requiring more chip area but alleviat-
ing the problem of multiple TLB entries
per physical page. Alternatively, if there
were multiple IDs associated with each
process and not with each page (this is like
the scheme used in PA-RISC), a different
ID could be created for every instance of a

•

shared region, indicating the “identity” of
the group that collectively owns the region.
One possible implementation of the class is
shown in Figure 31.22.
Multiple-Owner, No ID This is the basic seg-
mented architecture that maps user addresses
onto a global address space at the granularity
of segments. This is how the PowerPC archi-
tecture is designed, and it is how the Pentium
segmentation mechanism can be used. If the
Pentium’s 4-GB linear address space were
treated as a global space to be shared a seg-
ment at a time, the segmentation mechanism
would be an effective protection mechanism,
obviating the need to fl ush the TLB on context
switch. If the segment registers are protected
from modifi cation by user-level processes, no
protection identifi ers are necessary. One pos-
sible implementation of the class is shown in
Figure 31.23.

•

Virtual Page Number Page Offset

VPN PFN

VPN PFN

… …

VPN PFN

Page Frame Number Page Offset

Virtual Address

Physical Address

ASID

ASID

ASID

…

ASID

TLB

FIGURE 31.21: An implementation of a single-owner, single-ID architecture. The ASID acts as a process ID.

Virtual Page Number Page Offset

VPN PFN

VPN PFN

… …
VPN PFN

Page Frame Number Page Offset

Virtual Address

Physical Address

ID

ID

ID

…

ID

TLB

ID
ID
IDID Set

(represents a set
of capabilities)

FIGURE 31.22: An implementation of a single-owner, multiple-ID architecture. Each ID in the ID set is compared against every ID
in the TLB to find a match. If any match succeeds, the result is a TLB hit.

ch31_P379751.indd 905ch31_P379751.indd 905 8/8/07 3:30:15 PM8/8/07 3:30:15 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w Other Clients!
i.e. Cache Coherence & various Consistency Models!

First, a look at some of the things that can go wrong,
just inside a SINGLE CHIP:

�9

DMA CTL Core Core…GPU

DRAM

I/O

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Proc B reads data from dev A, signals proc C when done  
(producer-consumer pair)

�10

Process C (consumer):!
"
global char data[SIZE];!
global int ready=0;!
"
while (1) {!
"
! ! while (!ready)  
! ! ! ! ;!
"
! ! process(data);!
! ! ready = 0;!
"
}

Process B (producer):!
"
global char data[SIZE];!
global int ready=0;!
"
int fd = open(“dev A”);!
"
while (1) {!
"
! ! while (ready)  
! ! ! ! ;!
"
! ! dma(fd, data, SIZE);!
! ! ready = 1;!
"
}

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Proc B reads data from dev A, signals proc C when done  
(producer-consumer pair) — more detail

�11

236 Memory Systems: Cache, DRAM, Disk

would be hard pressed to deduce causality between
the events), in this picture the memory system
observes all of the relevant events. In particular, the
following event orderings are seen in a sequentially
consistent system:

 1. A writes data, followed by A writing done
(seen by A and thus seen by all)

 2. A writes done, followed by B reading done
or some other variable written by the device
driver (seen by device driver and B and thus
seen by all)

B

A

C

4K data buffer

1

3 B is signaled

4 B updates synchronization After ‘ready’ is set to 0,
device A transfers data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

5 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

into the memory system

Variable ‘done’
(in driver)

2 A communicates
with device driver

via driver

… …

FIGURE 4.10: Race condition example, more detail. The previous model ignored (intentionally) the method by which device
A communicates to process B: the device driver. Communication with the device driver is through the memory system—
memory locations and/or memory-mapped I/O registers.

data

ready

A B C

(a)

data

done

A B C

(b)

ready

FIGURE 4.11: Realistic picture of data movement and causality. In (a), information propagates directly from A to B without going
through the memory system. Because the memory system does not observe the information, it cannot deduce causality, and
thus it is possible for A’s write to data to be delayed until after C’s read of data. In reality, A and B are most likely to communi-
cate through a device driver. Assume that the driver has a variable called “done;” (b) shows the picture of data movement and
 causality that makes sequential consistency work for this scenario.

ch04_P379751.indd Sec2:236ch04_P379751.indd Sec2:236 8/7/07 1:36:29 PM8/7/07 1:36:29 PM

236 Memory Systems: Cache, DRAM, Disk

would be hard pressed to deduce causality between
the events), in this picture the memory system
observes all of the relevant events. In particular, the
following event orderings are seen in a sequentially
consistent system:

 1. A writes data, followed by A writing done
(seen by A and thus seen by all)

 2. A writes done, followed by B reading done
or some other variable written by the device
driver (seen by device driver and B and thus
seen by all)

B

A

C

4K data buffer

1

3 B is signaled

4 B updates synchronization After ‘ready’ is set to 0,
device A transfers data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

5 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

into the memory system

Variable ‘done’
(in driver)

2 A communicates
with device driver

via driver

… …

FIGURE 4.10: Race condition example, more detail. The previous model ignored (intentionally) the method by which device
A communicates to process B: the device driver. Communication with the device driver is through the memory system—
memory locations and/or memory-mapped I/O registers.

data

ready

A B C

(a)

data

done

A B C

(b)

ready

FIGURE 4.11: Realistic picture of data movement and causality. In (a), information propagates directly from A to B without going
through the memory system. Because the memory system does not observe the information, it cannot deduce causality, and
thus it is possible for A’s write to data to be delayed until after C’s read of data. In reality, A and B are most likely to communi-
cate through a device driver. Assume that the driver has a variable called “done;” (b) shows the picture of data movement and
 causality that makes sequential consistency work for this scenario.

ch04_P379751.indd Sec2:236ch04_P379751.indd Sec2:236 8/7/07 1:36:29 PM8/7/07 1:36:29 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Proc B reads data from dev A, signals proc C when done  
(producer-consumer pair)

�12

DMA CTL Core Core…GPU

DRAM

I/O

3
5

1data buffer

2

driver sync

4

“ready” variable

6

data buffer

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Proc B reads data from dev A, signals proc C when done  
(producer-consumer pair)

�13

DMA CTL Core Core…GPU

DRAM

I/O

3
5

1data - delayed in DMA

2

driver sync

4

“ready” variable

6

data - stale

7
data sent by DMA  
… arrives too late

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Proc B reads data from dev A, signals proc C when done  
(producer-consumer pair)

�14

DMA CTL Core Core…GPU

DRAM

I/O

3
51

data held in CTL

2

driver sync

4

“ready” variable

6

data is stale
7
data sent to DRAM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Problem: causal relationships

�15

236 Memory Systems: Cache, DRAM, Disk

would be hard pressed to deduce causality between
the events), in this picture the memory system
observes all of the relevant events. In particular, the
following event orderings are seen in a sequentially
consistent system:

 1. A writes data, followed by A writing done
(seen by A and thus seen by all)

 2. A writes done, followed by B reading done
or some other variable written by the device
driver (seen by device driver and B and thus
seen by all)

B

A

C

4K data buffer

1

3 B is signaled

4 B updates synchronization After ‘ready’ is set to 0,
device A transfers data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

5 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

into the memory system

Variable ‘done’
(in driver)

2 A communicates
with device driver

via driver

… …

FIGURE 4.10: Race condition example, more detail. The previous model ignored (intentionally) the method by which device
A communicates to process B: the device driver. Communication with the device driver is through the memory system—
memory locations and/or memory-mapped I/O registers.

data

ready

A B C

(a)

data

done

A B C

(b)

ready

FIGURE 4.11: Realistic picture of data movement and causality. In (a), information propagates directly from A to B without going
through the memory system. Because the memory system does not observe the information, it cannot deduce causality, and
thus it is possible for A’s write to data to be delayed until after C’s read of data. In reality, A and B are most likely to communi-
cate through a device driver. Assume that the driver has a variable called “done;” (b) shows the picture of data movement and
 causality that makes sequential consistency work for this scenario.

ch04_P379751.indd Sec2:236ch04_P379751.indd Sec2:236 8/7/07 1:36:29 PM8/7/07 1:36:29 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Problem scales with the system size

�16

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 247

each cache block in a data structure associated with
that cache block. The data structure contains such
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in
a directory, which can be centralized or distributed;
when a client makes a request for a cache block, its
corresponding directory entry is fi rst consulted to
determine the appropriate course of action.

A snoop-based scheme uses no such per-block
data structure. Instead, the appropriate course of
action is determined by consulting every client in the
system. On every request, each cache in the system
is consulted and responds with information on the
requested block; the collected information indicates
the appropriate response. For instance, rather than
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of
the block actively responds to a coherence broadcast,

indicating ownership and returning the requested
data (if such is the appropriate response).

Snoopy Protocols
In a snoopy protocol, all coherence-related activity

is broadcast to all processors. All processors analyze
all activity, and each reacts to the information pass-
ing through the system based on the contents of its
caches. For example, if one processor is writing to a
given data cache line, and another processor has a
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing
the block, the fi rst processor now has a dirty copy. If
the second processor then makes a read request to
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of
a common bus for their implementation, but they
need not use common busses if there is agreement

C
P

U

$

Backing Store

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

Backing
Store

DRAM
System

CPU CPU CPU

CPU

$

CPU

$

C
P

U

$

Backing Store

CPU

System & Memory
Controller

Backing
Store

DRAM
System

CPU CPU CPU CPU

Sys/Mem
Controller

CPU

MCDRAM
CPU

MCDRAM

CPU

MC DRAM
CPU

MCDRAM

CPU

MCDRAMCPU

MCDRAM

CPU

MC DRAM

FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the
bottom left.

ch04_P379751.indd Sec2:247ch04_P379751.indd Sec2:247 8/7/07 1:36:33 PM8/7/07 1:36:33 PM

Solve! system linear eqs: xi+1 = Axi + b!
"
while (!converged) {!
! ! doparallel(N) {!
! ! ! ! int i = myid();!
! ! ! ! xtemp[i] = b[i];!
! ! ! ! for (j=0; j<N; j++) {!
! ! ! ! ! ! xtemp[i] += A[i,j] * x[j];!
! ! ! ! }!
! ! }  
! ! // implicit barrier sync!
! ! doparallel(N) {!
! ! ! ! int i = myid();!
! ! ! ! x[i] = xtemp[i];!
! ! }!
}

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Some Consistency Models!
Strict Consistency: A read operation shall return the value
written by the most recent store operation.	

Sequential Consistency: The result of an execution is the
same as a single interleaving of sequential, program-order
accesses from different processors.	

Processor Consistency: Writes from a process are
observed by other clients to be in program order; all clients
observe a single interleaving of writes from different
processors.

�17

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Strict Consistency

�18

234 Memory Systems: Cache, DRAM, Disk

 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets
stolen from Tanenbaum [1995]):

Strict Consistency: A read operation shall
return the value written by the most recent store
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process
are observed by other clients to be in program
order; all clients observe a single interleaving of
writes from different processors.

The following sections describe these in more
detail.

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which
most programs are written. The basic tenet is

A read operation shall return the value written
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model
is intuitively appealing. If any process has written a
value to a variable, the next read to that variable will
return the value written. The model is unrealistic for
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or
some realistic channel with non-zero latency, then
how does one support such a model? The “most recent
store” defi nition causes non-trivial problems. Suppose
B performs a read to the same location a fraction of
a second (“∆t” in the fi gure) after A’s write operation.
If the time-of-fl ight between two processors is longer
than the “fraction of a second” timing between the
write and following read, then there is no means for
B even to know of the write event at the moment its
read request is issued. Such a system will not be strictly
consistent unless it has hardware or software support7
to prevent such race conditions, and such support will
most likely degrade the performance of the common
case.

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks,
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.

ch04_P379751.indd Sec2:234ch04_P379751.indd Sec2:234 8/7/07 1:36:28 PM8/7/07 1:36:28 PM

234 Memory Systems: Cache, DRAM, Disk

 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets
stolen from Tanenbaum [1995]):

Strict Consistency: A read operation shall
return the value written by the most recent store
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process
are observed by other clients to be in program
order; all clients observe a single interleaving of
writes from different processors.

The following sections describe these in more
detail.

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which
most programs are written. The basic tenet is

A read operation shall return the value written
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model
is intuitively appealing. If any process has written a
value to a variable, the next read to that variable will
return the value written. The model is unrealistic for
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or
some realistic channel with non-zero latency, then
how does one support such a model? The “most recent
store” defi nition causes non-trivial problems. Suppose
B performs a read to the same location a fraction of
a second (“∆t” in the fi gure) after A’s write operation.
If the time-of-fl ight between two processors is longer
than the “fraction of a second” timing between the
write and following read, then there is no means for
B even to know of the write event at the moment its
read request is issued. Such a system will not be strictly
consistent unless it has hardware or software support7
to prevent such race conditions, and such support will
most likely degrade the performance of the common
case.

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks,
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.

ch04_P379751.indd Sec2:234ch04_P379751.indd Sec2:234 8/7/07 1:36:28 PM8/7/07 1:36:28 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Sequential Consistency

�19

234 Memory Systems: Cache, DRAM, Disk

 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets
stolen from Tanenbaum [1995]):

Strict Consistency: A read operation shall
return the value written by the most recent store
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process
are observed by other clients to be in program
order; all clients observe a single interleaving of
writes from different processors.

The following sections describe these in more
detail.

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which
most programs are written. The basic tenet is

A read operation shall return the value written
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model
is intuitively appealing. If any process has written a
value to a variable, the next read to that variable will
return the value written. The model is unrealistic for
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or
some realistic channel with non-zero latency, then
how does one support such a model? The “most recent
store” defi nition causes non-trivial problems. Suppose
B performs a read to the same location a fraction of
a second (“∆t” in the fi gure) after A’s write operation.
If the time-of-fl ight between two processors is longer
than the “fraction of a second” timing between the
write and following read, then there is no means for
B even to know of the write event at the moment its
read request is issued. Such a system will not be strictly
consistent unless it has hardware or software support7
to prevent such race conditions, and such support will
most likely degrade the performance of the common
case.

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks,
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.

ch04_P379751.indd Sec2:234ch04_P379751.indd Sec2:234 8/7/07 1:36:28 PM8/7/07 1:36:28 PM

234 Memory Systems: Cache, DRAM, Disk

 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets
stolen from Tanenbaum [1995]):

Strict Consistency: A read operation shall
return the value written by the most recent store
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process
are observed by other clients to be in program
order; all clients observe a single interleaving of
writes from different processors.

The following sections describe these in more
detail.

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which
most programs are written. The basic tenet is

A read operation shall return the value written
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model
is intuitively appealing. If any process has written a
value to a variable, the next read to that variable will
return the value written. The model is unrealistic for
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or
some realistic channel with non-zero latency, then
how does one support such a model? The “most recent
store” defi nition causes non-trivial problems. Suppose
B performs a read to the same location a fraction of
a second (“∆t” in the fi gure) after A’s write operation.
If the time-of-fl ight between two processors is longer
than the “fraction of a second” timing between the
write and following read, then there is no means for
B even to know of the write event at the moment its
read request is issued. Such a system will not be strictly
consistent unless it has hardware or software support7
to prevent such race conditions, and such support will
most likely degrade the performance of the common
case.

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks,
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.

ch04_P379751.indd Sec2:234ch04_P379751.indd Sec2:234 8/7/07 1:36:28 PM8/7/07 1:36:28 PM

But satisfies Sequential Consistency

… and Sequential Consistency

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Sequential Consistency!
Handles our earlier problem:!

"

"

"

"

"

 
Note: for this to work, memory controller may reorder
internally, but not externally

�20

236 Memory Systems: Cache, DRAM, Disk

would be hard pressed to deduce causality between
the events), in this picture the memory system
observes all of the relevant events. In particular, the
following event orderings are seen in a sequentially
consistent system:

 1. A writes data, followed by A writing done
(seen by A and thus seen by all)

 2. A writes done, followed by B reading done
or some other variable written by the device
driver (seen by device driver and B and thus
seen by all)

B

A

C

4K data buffer

1

3 B is signaled

4 B updates synchronization After ‘ready’ is set to 0,
device A transfers data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

5 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

into the memory system

Variable ‘done’
(in driver)

2 A communicates
with device driver

via driver

… …

FIGURE 4.10: Race condition example, more detail. The previous model ignored (intentionally) the method by which device
A communicates to process B: the device driver. Communication with the device driver is through the memory system—
memory locations and/or memory-mapped I/O registers.

data

ready

A B C

(a)

data

done

A B C

(b)

ready

FIGURE 4.11: Realistic picture of data movement and causality. In (a), information propagates directly from A to B without going
through the memory system. Because the memory system does not observe the information, it cannot deduce causality, and
thus it is possible for A’s write to data to be delayed until after C’s read of data. In reality, A and B are most likely to communi-
cate through a device driver. Assume that the driver has a variable called “done;” (b) shows the picture of data movement and
 causality that makes sequential consistency work for this scenario.

ch04_P379751.indd Sec2:236ch04_P379751.indd Sec2:236 8/7/07 1:36:29 PM8/7/07 1:36:29 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Sequential Consistency!
Requirements:!
• Everyone can reorder internally but not externally!
• All I/O & memory references must go through  

the same sync point (e.g. memory-mapped I/O)!
• Write of data and driver signal must be same client!
• Write buffering presents significant problems!
• Reads must be delayed by system latency!

… let’s look at this last one more closely

�21

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Really Famous Example (Goodman 1989)!
"

"

"

"

"

"

Sequential Consistency allows 0 or 1 processes to die!

! (not both)

�22

Process P1:!
"
Initially, A=0!
"
A=1;!
"
if (B==0) {!
! ! kill P2;!
}

Process P2:!
"
Initially, B=0!
"
B=1;!
"
if (A==0) {!
! ! kill P1;!
}

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Race-Condition Example!

�23

238 Memory Systems: Cache, DRAM, Disk

industry trend toward multi-cores on-chip
may make this scheme viable, at least in
providing a locally consistent (chip-wide
consistent) cache system.
A similar implication arises from study-
ing Hennessy and Patterson’s example,
originally proposed by Goodman [1989], in
which a symmetric race condition occurs
between two simultaneously executing
processes, P1 and P2:

P1: (initially, A=0) P2: (initially, B=0)
A=1; B=1;
if (B==0) { if (A==0) {

kill P2; kill P1;
} }

A sequentially consistent memory system
will allow 0 or 1 processes to be killed, but not
both. For instance, P1 will only try to kill P2
if P1’s read to B occurs before P2’s write to B.
By the defi nition of sequential consistency
(which stipulates the in-order execution of
memory events), this would imply that P1’s
write to A must come before P2’s read of A.
The symmetric argument holds equally well.

•

The implication for an implementation of
this model is illustrated in Figure 4.12: not
only must writes not be buffered (as men-
tioned in the previous bullet), but reads must
be delayed long enough for write informa-
tion to propagate to the rest of the system.
To ensure that two processes synchronize
their memory events in a way that ensures
sequential consistency, an implementation
must do one of two things: either (i) block all
subsequent memory operations following a
write until all processor cores have observed
the write event or (ii) allow bypassing and/
or early execution of memory instructions
subsequent to the write operation, but hold
their commitment until long enough after
the write operation to ensure that all proces-
sor cores can observe the write. The implica-
tion of speculative bypassing is that if in the
meantime a write is observed originating
from another core that confl icts with an early
executing memory operation, that instruc-
tion’s commitment must be halted, its results
must be discarded, and the instruction must
be reexecuted in light of the new data.

Fails to satisfy sequential consistency: Satisfies sequential consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read AB=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.12: Sequential consistency and racing threads. A memory system that satisfi es sequential consistency must delay all
memory operations following a write until the write is observed by all other clients. Otherwise, it would be possible to have both
P1 and P2 try to kill each other (as in the scenario on the left), which is disallowed by the sequential model. For example, the
earliest that a subsequent read can follow a write is the message-propagation time within the system. Alternatively, a processor
can speculate, allowing reads to execute early and patching up if problems are later detected.

ch04_P379751.indd Sec2:238ch04_P379751.indd Sec2:238 8/7/07 1:36:30 PM8/7/07 1:36:30 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Race-Condition Example!

�24

238 Memory Systems: Cache, DRAM, Disk

industry trend toward multi-cores on-chip
may make this scheme viable, at least in
providing a locally consistent (chip-wide
consistent) cache system.
A similar implication arises from study-
ing Hennessy and Patterson’s example,
originally proposed by Goodman [1989], in
which a symmetric race condition occurs
between two simultaneously executing
processes, P1 and P2:

P1: (initially, A=0) P2: (initially, B=0)
A=1; B=1;
if (B==0) { if (A==0) {

kill P2; kill P1;
} }

A sequentially consistent memory system
will allow 0 or 1 processes to be killed, but not
both. For instance, P1 will only try to kill P2
if P1’s read to B occurs before P2’s write to B.
By the defi nition of sequential consistency
(which stipulates the in-order execution of
memory events), this would imply that P1’s
write to A must come before P2’s read of A.
The symmetric argument holds equally well.

•

The implication for an implementation of
this model is illustrated in Figure 4.12: not
only must writes not be buffered (as men-
tioned in the previous bullet), but reads must
be delayed long enough for write informa-
tion to propagate to the rest of the system.
To ensure that two processes synchronize
their memory events in a way that ensures
sequential consistency, an implementation
must do one of two things: either (i) block all
subsequent memory operations following a
write until all processor cores have observed
the write event or (ii) allow bypassing and/
or early execution of memory instructions
subsequent to the write operation, but hold
their commitment until long enough after
the write operation to ensure that all proces-
sor cores can observe the write. The implica-
tion of speculative bypassing is that if in the
meantime a write is observed originating
from another core that confl icts with an early
executing memory operation, that instruc-
tion’s commitment must be halted, its results
must be discarded, and the instruction must
be reexecuted in light of the new data.

Fails to satisfy sequential consistency: Satisfies sequential consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read AB=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.12: Sequential consistency and racing threads. A memory system that satisfi es sequential consistency must delay all
memory operations following a write until the write is observed by all other clients. Otherwise, it would be possible to have both
P1 and P2 try to kill each other (as in the scenario on the left), which is disallowed by the sequential model. For example, the
earliest that a subsequent read can follow a write is the message-propagation time within the system. Alternatively, a processor
can speculate, allowing reads to execute early and patching up if problems are later detected.

ch04_P379751.indd Sec2:238ch04_P379751.indd Sec2:238 8/7/07 1:36:30 PM8/7/07 1:36:30 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Race-Condition Example!
In practice:!
• speculate!
• throw exception if problem occurs!

HOWEVER — from Jaleel & Jacob [HPCA 2005]:!
• increasing the reorder buffer from 80 to 512 entries results in

an increase in memory traps by 6x and an increase in total
execution overhead by 10–40%!

• reordering memory instructions increases L1 data cache
accesses by 10–60% and L1 data cache misses by 10–20%

�25

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Processor Consistency!
Also called Total Store Order!

All writes in program order, reads freely reordered!

Both of these scenarios are satisfied in this model:
�26

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 239

As the last two bullets attest, in a sequentially
consistent memory system, write performance will
be abysmal and read performance will suffer, or
the implementation will embody signifi cant com-
plexity to avoid the performance limitations of the
model.

Processor Consistency
So how does one avoid the limitations of a sequen-

tially consistent memory system? A further relaxation
of memory consistency is called processor consis-
tency [Goodman 1989], also called total store order.
Its basic tenet is

Writes from a process are observed by other
clients to be in program order; all clients
observe a single interleaving of writes from
different processors.

This simply removes the read-ordering restriction
imposed by sequential consistency: a processor is
free to reorder reads ahead of writes without waiting
for write data to be propagated to other clients in the
system. The racing threads example, if executed on an
implementation of processor consistency, can result in
both processes killing each other: reads need not block
on preceding writes; they may even execute ahead

of preceding writes (see Figure 4.13). Similarly, the
 example illustrated in Figures 4.10 and 4.11 could easily
result in unexpected behavior: processor consistency
allows reads to go as early as desired, which would allow
C’s read of the data buffer to proceed before C’s read of
the variable ready fi nishes (consider, for example, the
scenario in which the conditional branch on the value
of ready is predicted early and correctly):

if (ready) {
 read data buffer
}

Ensuring correct behavior in such a consistency
model requires the use of explicit release/acquire
mechanisms (e.g., see Hennessy and Patterson [1996]
for example code) in the update of either the device
driver variable done or the variable ready.

Other Consistency Models
This might seem all that is necessary, but there are

many further relaxations. For instance,

Partial store order allows a processor to
freely reorder local writes with respect to
other local writes.
Weak consistency allows a processor to freely
reorder local writes ahead of local reads.

•

•

Satisfies processor consistency: Satisfies processor consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read A

B=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.13: Processor consistency and racing threads. Processor consistency allows each processor or client within the sys-
tem to reorder freely reads with respect to writes. As a result, the racing threads example can easily result in both processes
trying to kill each other (both diagrams illustrate that outcome).

ch04_P379751.indd Sec2:239ch04_P379751.indd Sec2:239 8/7/07 1:36:30 PM8/7/07 1:36:30 PM

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 239

As the last two bullets attest, in a sequentially
consistent memory system, write performance will
be abysmal and read performance will suffer, or
the implementation will embody signifi cant com-
plexity to avoid the performance limitations of the
model.

Processor Consistency
So how does one avoid the limitations of a sequen-

tially consistent memory system? A further relaxation
of memory consistency is called processor consis-
tency [Goodman 1989], also called total store order.
Its basic tenet is

Writes from a process are observed by other
clients to be in program order; all clients
observe a single interleaving of writes from
different processors.

This simply removes the read-ordering restriction
imposed by sequential consistency: a processor is
free to reorder reads ahead of writes without waiting
for write data to be propagated to other clients in the
system. The racing threads example, if executed on an
implementation of processor consistency, can result in
both processes killing each other: reads need not block
on preceding writes; they may even execute ahead

of preceding writes (see Figure 4.13). Similarly, the
 example illustrated in Figures 4.10 and 4.11 could easily
result in unexpected behavior: processor consistency
allows reads to go as early as desired, which would allow
C’s read of the data buffer to proceed before C’s read of
the variable ready fi nishes (consider, for example, the
scenario in which the conditional branch on the value
of ready is predicted early and correctly):

if (ready) {
 read data buffer
}

Ensuring correct behavior in such a consistency
model requires the use of explicit release/acquire
mechanisms (e.g., see Hennessy and Patterson [1996]
for example code) in the update of either the device
driver variable done or the variable ready.

Other Consistency Models
This might seem all that is necessary, but there are

many further relaxations. For instance,

Partial store order allows a processor to
freely reorder local writes with respect to
other local writes.
Weak consistency allows a processor to freely
reorder local writes ahead of local reads.

•

•

Satisfies processor consistency: Satisfies processor consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read A

B=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.13: Processor consistency and racing threads. Processor consistency allows each processor or client within the sys-
tem to reorder freely reads with respect to writes. As a result, the racing threads example can easily result in both processes
trying to kill each other (both diagrams illustrate that outcome).

ch04_P379751.indd Sec2:239ch04_P379751.indd Sec2:239 8/7/07 1:36:30 PM8/7/07 1:36:30 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Some Other Consistency Models!
Partial store order — a processor can freely reorder local
writes with respect to other local writes!

Weak consistency — a processor can freely reorder local
writes ahead of local reads!

Release consistency — different classes of synchronization
… enforces synchronization only w.r.t. acquire/release
operations. On acquire, memory system updates all
protected variables before continuing; on release, memory
system propagates changes to the protected variables out to
the rest of the system

�27

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Cache Coherence Schemes!
Ways to implement a consistency model:!
• in software (e.g. in virtual memory system, via page table)"
• in hardware!
• combine hardware & software!

The hardware component is called “cache coherence”

�28

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Coherence Implementations!
Cache-Block States:!

I — Invalid!

M — Modified — read-writable, forwardable, dirty!

S — Shared — read-only (can be clean or dirty)!

E — Exclusive — read-writable, clean!

O — Owned — read-only, forwardable, dirty	

�29

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Coherence Implementations: SI!
Works with write-through caches!

Block is either present (Shared) or not (Invalid)!

Write operations cause one of two results:!
• write-invalidate (only one writable copy extant)!
• write-update (can have multiple writers)!

Both schemes require broadcast or multicast of
coherence information and/or write data!

Note: write-update and sequential consistency don’t
play nice together

�30 Problem: Nobody wants  
to use write-through caches

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Coherence Implementations: MSI!
Write-back caches: dirty bit (Modified state)

�31

242 Memory Systems: Cache, DRAM, Disk

extremely hard to implement: to guarantee that all
clients see all operations in the same order, an imple-
mentation must guarantee that all update messages
are interleaved with all other system-wide coherence
messages in the same order for all nodes. While sys-
tems exist that do this (e.g., ISIS [Birman & Joseph
1987]), they tend to be relatively slow.

Using Write-Back Caches (MSI)
To reduce bandwidth requirements, one can

change the scheme slightly (use write-back caches
instead of write-through caches) and not propagate
write data immediately. The scheme exploits write-
coalescing in the data caches: multiple writes to the
same cache block will not necessarily generate mul-
tiple coherence broadcasts to the system; rather,
coherence messages will only be sent out when the
written block is removed from the cache. Unlike the
write-through scenario, in this scheme, data in a par-
ticular cache may be out of sync with the backing
store and the other clients in the system. The imple-
mentation must ensure that this allows no situations
that would be deemed incorrect by the chosen con-
sistency model. Figure 4.15 illustrates a possible state
machine for the implementation.

Whereas a write-through cache is permitted to
evict a block silently at any time (e.g., to make room

for incoming data), a write-back cache must fi rst
update the backing store before evicting a block, if
the evicted block contains newer data than the back-
ing store. To handle this, the cache must add a new
state, Modifi ed, to keep track of which blocks are
dirty and must be written back to the backing store.
As with the write-through example, writes may be
handled with either a write-update or write-invali-
date policy.

MSI-protocol implementations typically require
that reads to Invalid blocks (i.e., read misses) fi rst
ensure that no other client holds a Modifi ed copy of
the requested block and that a cache with a Modifi ed
block returns the written data to a requestor immedi-
ately. A write request to a Shared or Invalid block must
fi rst notify all other client caches so that they can
change their local copies of the block to the Invalid
state. These steps ensure that the most recently writ-
ten data in the system is relayed to any client that
wants to read the block. While this mirrors the read-
modify-write nature of many data accesses, it forces
the process to require two steps in all instances.

In particular, when an MSI client acquires a block on
a read miss, the block is acquired in the Shared state,
and to write it the client must then follow this with a
write-invalidate broadcast so that it can place the block
in the Modifi ed state and overwrite the block with new
data. In an alternative MSI implementation, all reads

Invalid

bus read-miss
bus write-miss

send cached data

bus write-miss

Shared

Modified

write hit
xmit write miss

write hit

write miss
xmit write miss

read miss
xmit read miss

(acts as invalidate msg)

FIGURE 4.15: State machine for an MSI protocol [based on Archibald and Baer 1986]. Boldface font indicates observed action
(e.g., local write miss to block in question, or a bus transaction from another cache on a block address matching in the local tags).
Regular font indicates response action taken by local cache.

ch04_P379751.indd Sec2:242ch04_P379751.indd Sec2:242 8/7/07 1:36:31 PM8/7/07 1:36:31 PM

Problem: when the app 
reads data and then writes, 
sends a second broadcast

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Coherence Implementations: MESI!
Reduces write broadcasts

�32

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 243

could use a write-invalidate broadcast to acquire all
read blocks in a Modifi ed state, just in case they might
wish to write them later. This latter approach, while
reducing the broadcast messages required for a write
operation, would eliminate the possibility of real read-
sharing (every block would be cached in, at most, one
place). In addition, even if the block is not, in fact, mod-
ifi ed by the requesting client, the fact that it is acquired
in the Modifi ed state implies that it must be written
back to the backing store upon eviction, thereby turn-
ing all memory operations into de facto writes.

Alternatively, the addition of the Exclusive state
solves the same problem: a MESI protocol provides
another mechanism for acquiring read data that
requires no global update or broadcast request when
the client chooses to write the acquired block.

Reducing Write Broadcasts (MESI)
To provide a lower overhead write mechanism,

the Exclusive state is added to the system’s write-
back caches. A client in the system may not write to a
cache block unless it fi rst acquires a copy of the block
in the Exclusive state, and only one system-wide copy
of that block may be marked Exclusive. Even if a cli-
ent has a readable copy of the block in its data cache
(e.g., in the Shared state), the client may not write the
block unless it fi rst acquires the block in an Exclusive

state. Figure 4.16 illustrates a possible state machine
for the implementation.

Compared to the Modifi ed and Shared states, the
Exclusive state is somewhere in between—a state in
which the client has the authority to write the block,
but the block is not yet out of sync with the backing
store. A block in this state can be written by the cli-
ent without fi rst issuing a write-invalidate, or it can
be forwarded to another client without the need to
update the backing store (in which case it can no lon-
ger be marked Exclusive). In a MESI implementation,
the fi rst step in a write operation is for a processor
to perform a read-exclusive bus transaction. This
informs all clients in the system of an upcoming write
to the requested block, and it typically invalidates
all extant copies of the block found in client caches.
Once the block is acquired in an Exclusive state, the
processor may freely overwrite the data at will. When
the cache block is written, it changes to the Modi-
fi ed state, which indicates that the data is dirty—out
of sync with the backing store and requiring a write-
back at a later time.

The written data becomes visible to the rest of the
system later when the block is evicted from the writ-
er’s cache, causing a write-back to the backing store.
Alternatively, the cache-coherence mechanism could
prompt the Exclusive owner to propagate changes
back to the backing store early if, in the meantime,

Invalid

Modified

Exclusive

Shared

bus invalidate

write hit

bus

bus invalidate

bus read-miss
send cached data

bus read-miss
send cached data

write hit

write

invalidate

hit

bus read-miss
send cached datasend cached data

write miss
xmit write miss

read miss
xmit read miss
[response from
main memory]

read miss
xmit read miss
[response from
another cache]

FIGURE 4.16: State machine for a MESI protocol [based on Archibald and Baer 1986]. Boldface font indicates observed action
(e.g., local write miss to block in question, or a bus transaction from another cache on a block address matching in the local tags).
Regular font indicates response action taken by local cache.

ch04_P379751.indd Sec2:243ch04_P379751.indd Sec2:243 8/7/07 1:36:31 PM8/7/07 1:36:31 PM

Problem: When you ask 
for a block, potentially many  
clients may respond

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Coherence Implementations: MESIF!
Shared broken into two: Shared (1+) and Forwardable (1) 
Compare MESI (left) vs. MESIF (right):

�33 Problem: All coherence info 
goes through central point: 
the backing store

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Coherence Implementations: MOESI

�34

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

MESI vs MOESI (AMD) vs MESIF (Intel)

�35

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Some System Configurations!

�36

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 247

each cache block in a data structure associated with
that cache block. The data structure contains such
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in
a directory, which can be centralized or distributed;
when a client makes a request for a cache block, its
corresponding directory entry is fi rst consulted to
determine the appropriate course of action.

A snoop-based scheme uses no such per-block
data structure. Instead, the appropriate course of
action is determined by consulting every client in the
system. On every request, each cache in the system
is consulted and responds with information on the
requested block; the collected information indicates
the appropriate response. For instance, rather than
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of
the block actively responds to a coherence broadcast,

indicating ownership and returning the requested
data (if such is the appropriate response).

Snoopy Protocols
In a snoopy protocol, all coherence-related activity

is broadcast to all processors. All processors analyze
all activity, and each reacts to the information pass-
ing through the system based on the contents of its
caches. For example, if one processor is writing to a
given data cache line, and another processor has a
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing
the block, the fi rst processor now has a dirty copy. If
the second processor then makes a read request to
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of
a common bus for their implementation, but they
need not use common busses if there is agreement

C
P

U

$

Backing Store

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

Backing
Store

DRAM
System

CPU CPU CPU

CPU

$

CPU

$

C
P

U

$

Backing Store

CPU

System & Memory
Controller

Backing
Store

DRAM
System

CPU CPU CPU CPU

Sys/Mem
Controller

CPU

MCDRAM
CPU

MCDRAM

CPU

MC DRAM
CPU

MCDRAM

CPU

MCDRAMCPU

MCDRAM

CPU

MC DRAM

FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the
bottom left.

ch04_P379751.indd Sec2:247ch04_P379751.indd Sec2:247 8/7/07 1:36:33 PM8/7/07 1:36:33 PM

UMA:
NUMA:

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Bus-Based, Hierarchical

�37

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 247

each cache block in a data structure associated with
that cache block. The data structure contains such
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in
a directory, which can be centralized or distributed;
when a client makes a request for a cache block, its
corresponding directory entry is fi rst consulted to
determine the appropriate course of action.

A snoop-based scheme uses no such per-block
data structure. Instead, the appropriate course of
action is determined by consulting every client in the
system. On every request, each cache in the system
is consulted and responds with information on the
requested block; the collected information indicates
the appropriate response. For instance, rather than
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of
the block actively responds to a coherence broadcast,

indicating ownership and returning the requested
data (if such is the appropriate response).

Snoopy Protocols
In a snoopy protocol, all coherence-related activity

is broadcast to all processors. All processors analyze
all activity, and each reacts to the information pass-
ing through the system based on the contents of its
caches. For example, if one processor is writing to a
given data cache line, and another processor has a
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing
the block, the fi rst processor now has a dirty copy. If
the second processor then makes a read request to
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of
a common bus for their implementation, but they
need not use common busses if there is agreement

C
P

U

$

Backing Store

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

Backing
Store

DRAM
System

CPU CPU CPU

CPU

$

CPU

$

C
P

U

$

Backing Store

CPU

System & Memory
Controller

Backing
Store

DRAM
System

CPU CPU CPU CPU

Sys/Mem
Controller

CPU

MCDRAM
CPU

MCDRAM

CPU

MC DRAM
CPU

MCDRAM

CPU

MCDRAMCPU

MCDRAM

CPU

MC DRAM

FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the
bottom left.

ch04_P379751.indd Sec2:247ch04_P379751.indd Sec2:247 8/7/07 1:36:33 PM8/7/07 1:36:33 PM

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 247

each cache block in a data structure associated with
that cache block. The data structure contains such
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in
a directory, which can be centralized or distributed;
when a client makes a request for a cache block, its
corresponding directory entry is fi rst consulted to
determine the appropriate course of action.

A snoop-based scheme uses no such per-block
data structure. Instead, the appropriate course of
action is determined by consulting every client in the
system. On every request, each cache in the system
is consulted and responds with information on the
requested block; the collected information indicates
the appropriate response. For instance, rather than
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of
the block actively responds to a coherence broadcast,

indicating ownership and returning the requested
data (if such is the appropriate response).

Snoopy Protocols
In a snoopy protocol, all coherence-related activity

is broadcast to all processors. All processors analyze
all activity, and each reacts to the information pass-
ing through the system based on the contents of its
caches. For example, if one processor is writing to a
given data cache line, and another processor has a
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing
the block, the fi rst processor now has a dirty copy. If
the second processor then makes a read request to
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of
a common bus for their implementation, but they
need not use common busses if there is agreement

C
P

U

$

Backing Store

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

Backing
Store

DRAM
System

CPU CPU CPU

CPU

$

CPU

$

C
P

U

$

Backing Store

CPU

System & Memory
Controller

Backing
Store

DRAM
System

CPU CPU CPU CPU

Sys/Mem
Controller

CPU

MCDRAM
CPU

MCDRAM

CPU

MC DRAM
CPU

MCDRAM

CPU

MCDRAMCPU

MCDRAM

CPU

MC DRAM

FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the
bottom left.

ch04_P379751.indd Sec2:247ch04_P379751.indd Sec2:247 8/7/07 1:36:33 PM8/7/07 1:36:33 PM

Core Core…CoreCoreCore

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 247

each cache block in a data structure associated with
that cache block. The data structure contains such
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in
a directory, which can be centralized or distributed;
when a client makes a request for a cache block, its
corresponding directory entry is fi rst consulted to
determine the appropriate course of action.

A snoop-based scheme uses no such per-block
data structure. Instead, the appropriate course of
action is determined by consulting every client in the
system. On every request, each cache in the system
is consulted and responds with information on the
requested block; the collected information indicates
the appropriate response. For instance, rather than
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of
the block actively responds to a coherence broadcast,

indicating ownership and returning the requested
data (if such is the appropriate response).

Snoopy Protocols
In a snoopy protocol, all coherence-related activity

is broadcast to all processors. All processors analyze
all activity, and each reacts to the information pass-
ing through the system based on the contents of its
caches. For example, if one processor is writing to a
given data cache line, and another processor has a
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing
the block, the fi rst processor now has a dirty copy. If
the second processor then makes a read request to
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of
a common bus for their implementation, but they
need not use common busses if there is agreement

C
P

U

$

Backing Store

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

Backing
Store

DRAM
System

CPU CPU CPU

CPU

$

CPU

$

C
P

U

$

Backing Store

CPU

System & Memory
Controller

Backing
Store

DRAM
System

CPU CPU CPU CPU

Sys/Mem
Controller

CPU

MCDRAM
CPU

MCDRAM

CPU

MC DRAM
CPU

MCDRAM

CPU

MCDRAMCPU

MCDRAM

CPU

MC DRAM

FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the
bottom left.

ch04_P379751.indd Sec2:247ch04_P379751.indd Sec2:247 8/7/07 1:36:33 PM8/7/07 1:36:33 PM

Even this:

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Directory-Based Protocols!
Can run on any configuration—the main idea is to
eliminate the need to broadcast every coherence event

�38

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 247

each cache block in a data structure associated with
that cache block. The data structure contains such
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in
a directory, which can be centralized or distributed;
when a client makes a request for a cache block, its
corresponding directory entry is fi rst consulted to
determine the appropriate course of action.

A snoop-based scheme uses no such per-block
data structure. Instead, the appropriate course of
action is determined by consulting every client in the
system. On every request, each cache in the system
is consulted and responds with information on the
requested block; the collected information indicates
the appropriate response. For instance, rather than
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of
the block actively responds to a coherence broadcast,

indicating ownership and returning the requested
data (if such is the appropriate response).

Snoopy Protocols
In a snoopy protocol, all coherence-related activity

is broadcast to all processors. All processors analyze
all activity, and each reacts to the information pass-
ing through the system based on the contents of its
caches. For example, if one processor is writing to a
given data cache line, and another processor has a
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing
the block, the fi rst processor now has a dirty copy. If
the second processor then makes a read request to
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of
a common bus for their implementation, but they
need not use common busses if there is agreement

C
P

U

$

Backing Store

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

CPU

S/M
Contr.

DRAM
System

Backing
Store

DRAM
System

CPU CPU CPU

CPU

$

CPU

$

C
P

U

$

Backing Store

CPU

System & Memory
Controller

Backing
Store

DRAM
System

CPU CPU CPU CPU

Sys/Mem
Controller

CPU

MCDRAM
CPU

MCDRAM

CPU

MC DRAM
CPU

MCDRAM

CPU

MCDRAMCPU

MCDRAM

CPU

MC DRAM

FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the
bottom left.

ch04_P379751.indd Sec2:247ch04_P379751.indd Sec2:247 8/7/07 1:36:33 PM8/7/07 1:36:33 PM

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Directory-Based Protocols!
Each memory block has a directory entry!

"

"

P+1 bits where P is the number of processors!

One dirty bit per directory entry!

If dirty bit is on then only one presence bit can be on!

Nodes only communicate with other nodes  
that have the memory block

�39

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Directory-Based Protocols!
Flavors:!
• Centralized Directory, Centralized Memory  

Poor scalability, but better than bus-based …"
• Decentralized Directory, Distributed Memory  

Each node stores small piece of entire directory
corresponding to the memory resident at that node. 
Directory queries sent to the node that the address  
of the block corresponds to (i.e. its Home Node)."

• Clustered  
Presence bits are coarse-grained

�40

High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Problem with Scalability!
What if latency to other procs > latency to local DRAM?

�41

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 253

system controller. Thus, the coherence point moves
a bit farther out toward the rest of the system. Com-
pare this with Figure 4.24; the implication is that, in
an integrated-controller system in which each node
has its own partition of the backing store, the cost
of performing coherence can easily outweigh the
cost of going to the local backing store. This implica-
tion can easily drive implementations. For instance,

a designer might want to proceed with a memory
request speculatively before the coherence state of a
block is known. This would require a client to back
out of a set of operations if it is later determined that
the data used (e.g., returned from the local DRAM
system) was out of sync with another cached copy
elsewhere in the system. However, such speculation
would tend to reduce memory-request latency. Other

transaction request

other processor(s)

processor coherence
point DRAM

coherence check

read command

read data

coherence status

most recent data

FIGURE 4.23: Abstract illustration of coherence point.

transaction
request
transmission

bus-level error checking

coherence check

data retrieval (from DRAM)

data return

serialize at
coherence
pointparallel tasks

FIGURE 4.24: Abstract illustration of “transaction latency.”

FIGURE 4.25: Coherence point in different system topologies.

CPU

System
Controller
memory
controller

M
A

R
D

I/O

CPU

System
Controller

memory
controller

M
A

R
D

I/O

CPU

System
Controller
memory
controller

M
A

R
D

I/O

CPU CPUCPU CPU

respective points

other CPU
and system
controller

of coherence-synchronization

ch04_P379751.indd Sec2:253ch04_P379751.indd Sec2:253 8/7/07 1:36:35 PM8/7/07 1:36:35 PM

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 253

system controller. Thus, the coherence point moves
a bit farther out toward the rest of the system. Com-
pare this with Figure 4.24; the implication is that, in
an integrated-controller system in which each node
has its own partition of the backing store, the cost
of performing coherence can easily outweigh the
cost of going to the local backing store. This implica-
tion can easily drive implementations. For instance,

a designer might want to proceed with a memory
request speculatively before the coherence state of a
block is known. This would require a client to back
out of a set of operations if it is later determined that
the data used (e.g., returned from the local DRAM
system) was out of sync with another cached copy
elsewhere in the system. However, such speculation
would tend to reduce memory-request latency. Other

transaction request

other processor(s)

processor coherence
point DRAM

coherence check

read command

read data

coherence status

most recent data

FIGURE 4.23: Abstract illustration of coherence point.

transaction
request
transmission

bus-level error checking

coherence check

data retrieval (from DRAM)

data return

serialize at
coherence
pointparallel tasks

FIGURE 4.24: Abstract illustration of “transaction latency.”

FIGURE 4.25: Coherence point in different system topologies.

CPU

System
Controller
memory
controller

M
A

R
D

I/O

CPU

System
Controller

memory
controller

M
A

R
D

I/O

CPU

System
Controller
memory
controller

M
A

R
D

I/O

CPU CPUCPU CPU

respective points

other CPU
and system
controller

of coherence-synchronization

ch04_P379751.indd Sec2:253ch04_P379751.indd Sec2:253 8/7/07 1:36:35 PM8/7/07 1:36:35 PM

