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The Problem is Multi-Fold

Cache Consistency (taken from web-cache community)

In the presence of a cache,
reads and writes behave (to a first order)
no differently than if the cache were not there

Three main issues:
Consistent with backing store
Consistent with self

Consistent with other clients of same backing store
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Consistency w/ Backing Store

For example, write-through vs. write-back

- NdO
Write buffer commonly used
In write-through caches: E S
Backing Store gca -= Backing Store
alllllls
“ E Write Buffer/Cache n E
B B
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Consistency w Self

Virtual cache synonym problem & hardware solutions
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Consistency w Self

Operating system solutions to aliasing problem
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(a) SPUR and OS/2 solutions

H]L

Physical
Memory

- &

Address Space A

Address Space B
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32-bit Effective Address
Segno (10 bits){Segment & Page Offsets (22 bits)
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Segment Registers [«—

52-bit Virtual Address l !

Segment ID (30 bits) Segment & Page Offsets (22 bits)
N\ /
N\ l /
TLB and Cache

Page Table
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Consistency w Self

Segmentation as a solution to the aliasing problem

Process A Process B Process C

Global Virtual Space

Paged /

Segment
NULL
(segment only
. Y partially-used)
Physical Memory |
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TLB ASID VPN PFN
ASID VPN PFN
ASID VPN PFN
Physical Address ¢

y

Page Frame Number Page Offset
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Consistency w Other Clients

l.e. Cache Coherence & various Consistency Models

First, a look at some of the things that can go wrong,
just inside a SINGLE CHIP:

"I_I_l_l_l"

o 0N S e B -
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Proc B reads data from dev A, signals proc C when done

(producer-consumer pair)

Process C (consumer):

global char data[SIZE];
global int ready=0;

while (1) {

while (!ready)

°
4

process( data );
ready = 0;

Process B (producer):

global char data[SIZE];
global int ready=0;

int £fd = open(“dev A");
while (1) {

while (ready)

4

dma( fd, data, SIZE );
ready = 1;
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Proc B reads data from dev A, signals proc C when done
(producer-consumer pair) — more detail

A communicates
A @ with device driver
‘ . B updates synchronization
After ‘ready’ is set to O, ° @ : : ,
@ device A transfers data variable ready’to 1
iInto the memory system
@ B is signaled
via driver
Memory
\L
H H B H E B
4K data buffer Variable ‘done’ 4-byte synchronization
(in driver) variable ‘ready’
A B C
q \\ \ /f' .~ C uses both data buffer and
ata \' \\ / synchronization variable:
while (!ready) // spin
done _ ile (fready) // sp

x = datali]; // read data buffer
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/QQRSlr \

f@\
VS

RYLB

Proc B reads data from dev A, signals proc C when done
(producer-consumer pair)

/0

ﬁ’AEL

' /oy
~ DMIA ﬂ !’, ﬁ

data

driver sync
“ready” variable

data

buffer

buffer
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Proc B reads data from dev A, signals proc C when done

(producer-consumer pair)
PAEL
f l 1 ,
®ans -— 1§ h
data - delayed in DMA 7
driver sync ﬂ
“ready” variable data sent by DMA

data - stale ... arrives too late

/0 -~ DMA
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Proc B reads data from dev A, signals proc C when done

(producer-consumer pair)
f‘"m
i [¢H

/O - DNIA

data held in CTL
driver sync
“ready” variable

data is stale data sent to DRAM
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Problem: causal relationships

N\

A

data \

done

ready Y
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Problem scales with the system size

Solve system linear egs: Xi+1 =AXi+ b

while (!converged) {

doparallel (N) {
int 1 = myid();
Xtemp[i] = b[1];
for (J=0; J<N; J++) {

xtemp[1] += A[1,]J] * X[]J];

}

}

// implicit barrier sync
doparallel (N) {

int 1 = myid();

Xx[1] = xtemp[1];
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Some Consistency Models

Strict Consistency: A read operation shall return the value
written by the most recent store operation.

Sequential Consistency: The result of an execution is the
same as a single interleaving of sequential, program-order
accesses from different processors.

Processor Consistency: Writes from a process are
observed by other clients to be in program order; all clients
observe a single interleaving of writes from different
Processors.




High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 18

Strict Consistency

Fails to satisfy strict consistency:

A writes 1

14 At
e
time

Satisfies strict consistency: T

A writes 1 B reads 0

e & -

B reads 1 B reads 1

—

B reads 1
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Sequential Consistency

Fails to satisfy strict consistency:

But satisfies Sequential Consistency

A writes 1
14 .
time >
Satisfies strict con_sistency: _ T T
... and Se(/luentlal Consistency B reads 0 B reads 1
writes 1

e & o

B reads 1 B reads 1
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Sequential Consistency

Handles our earlier problem:

A\\ /(B

data \ |
done Y >
ready >

Note: for this to work, memory controller may reorder

internally, but not externally
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Sequential Consistency

Requirements:

- Everyone can reorder internally but not externally

- All VO & memory references must go through

the same sync point (e.g. memory-mapped I/0O)

- Write of data and driver signal must be same client
- Write buffering presents significant problems

- Reads must be delayed by system latency

... let’s look at this last one more closely
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Really Famous Example (Goodman 1989)

Process Pl: Process P2:
Initially, A=0 Initially, B=0
A=1; B=1;

1f (B==0) { 1f (A==0) {

} kill P2; } kill P1;

Sequential Consistency allows 0 or 1 processes to die
(not both)
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Race-Condition Example

Fails to satisfy sequential consistency:
P1 P2

write A A=1

read B ———»

-

A=1

write B

read A
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Race-Condition Example

Satisfies sequential consistency:

P

write A

read B ————»»

A=1

P2

write B
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Race-Condition Example

In practice:

-+ speculate

- throw exception if problem occurs
HOWEVER — from Jaleel & Jacob [HPCA 2005]-

e |ncreasing the reorder bufter from 80 to 512 entries results Ir
an increase in memory traps by 6x and an increase in tota
execution overhead by 10-40%

e reordering memory instructions increases L1 data cache
accesses by 10-60% and L1 data cache misses by 10-20%
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Processor Consistency

Also called Total Store Order

All writes in program order, reads freely reordered

Both of these scenarios are satisfied in this model:

P1
write A >
read B >

B=1

time

B=1

P2

write B

read A

read B
write A

time

B=1

P2
-

A=1

read A

write B
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Some Other Consistency Models

Partial store order — a processor can freely reorder local
writes with respect to other local writes

Weak consistency — a processor can freely reorder local
writes ahead of local reads

Release consistency — different classes of synchronization
... enforces synchronization only w.r.t. acquire/release
operations. On acquire, memory system updates all
protected variables before continuing; on release, memory
system propagates changes to the protected variables out to
the rest of the system




High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 28

Cache Coherence Schemes

Ways to implement a consistency model:
in software (e.g. in virtual memory system, via page table)
iIn hardware
combine hardware & software

The hardware component is called “cache coherence”
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Coherence Implementations

Cache-Block States:

| — Invalid

M — Modified — read-writable, forwardable, dirty
S — Shared — read-only (can be clean or dirty)
E — Exclusive — read-writable, clean

O — Owned — read-only, forwardable, dirty
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Coherence Implementations: Sl

Works with write-through caches

Block is either present (Shared) or not (Invalid)

Problem: Nobody wants
to use write-through caches

Both schemes require broadcast or multicast of
coherence information and/or write data

Note: write-update and sequential consistency don’t
play nice together
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Goe 20 Write-back caches: dirty bit (Modified state)

Bruce Jacob mﬂrlte-ni/\r read miss
University of Crete e _ : xmit read miss

= Problem: when the app
reads data and then writes,
sends a second broadcast

~ wiie S
xmit write miss
write hit
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Coherence Implementations: MESI

Reduces write broadcasts

bus invalidate read mlss

Problem: When you ask
for a block, potentially many
clients may respond

. . S bus read-miss
write hit Modified . Shared send cached data
bus read-miss

send cached data
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e Jacah Compare MESI (left) vs. MESIF (right):

University of Crete [EETETR s  BEEE
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Problem: All coherence info
goes through central point:
- the backing store
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Coherence Implementations: MOESI

-

[: Invalid -

Load miss from memory

O: Owned

A

Successive stores to a line
shared by another processor.
Broadcast invalidate to all
sharing processors

A

Y

A

Instruction cache miss. or load
miss from another cache

S: Shared [®

Y

Store miss on an
invalidate cache line

-

Request from another

M: Modified

AA

Stored to a shared line.
Broadcast mvalidate to
all sharing processors

E: Exclusive

processor for a modified line

Store to an exclusive line i cache
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Clean/Dirty

Comments

hMust writeback to share or replace
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Exclusive

Transitions to M on wrte

Shared

Does not forward

University of Crete

Invalid

Cannot Read
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Forwardinc

Modified

Clean/Dirty

Unique?

Can
Forward?

Can Silent
Transition to

Must invalidate other copies to wnte

Comments

Can share without wrnteback

Owned

Must whnteback to transition

Exclusive

Transitions to M on write

Shared

chared can be dirty or clean

Invalid

Modified

Clean/Dirty

Unique?

Can
Forward?

Can Silent
Transition to

Cannot Read

Comments

hMust writeback to share or replace

Exclusive

Transitions to M on wrte

Shared

shared implies clean, can forward

Invalid

Cannot Read
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UMA
NUMA

Some System Configurations

NdO

]
—

L

1 cPul| [crPul| | cpPu| | cPU cPu| [crPu| | cpPu| | cPU
$ I 1L 1 I I e N e
l B 1
— ' i System & Memory
Controller
_ )
©@ Backing Store &% ?5 SyS/Mem
Controller
) DRAM
| Backing System
$ Store
DRAM L
U Backing System
Store
L CPU
——
CPU CPU CPU CPU DRAMY } MC
CPU CPU
C— _ 1 CPU
S/M <> S/M <> S/M <> S/M DRAM| | MC MC | |DRAM
Contr. Contr. Contr. Contr.
DRAM[ | mC
DRAM DRAM DRAM DRAM DRAM|[ | mMcC MC | |DRAM CPU
System System System System
Backing Store CPU CPU DRAM|[_| MC
_
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Sys/Mém
Contyoller

Backing

Backing

L Store

/ DRAM
/

Store
L

Even this: [o]

‘DRAMIII MG I:

CPU

‘DRAMIZI MG I:

CPU
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eliminate the need to broadcast every coherence event
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E ra4c-c—1l=——tct=9 = rQ&F—1]|— —| F =4 [ "
— | System & Memory
SLIDE 38 | I | | Controller
o . D
2 il Backing Store @ % SyS /Mem I
| | Controller |
Il — | DRAM
2 | Backing System
= | DRAM | LS. T ——— _ _ _ 1
esey | Backing System |
Store
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. g | | N
CPU CPU CPU CPU K DRAME { MC |
CPU CPU
N — : ] [ ] [ ] CPU
I SIM | | SM | | SM | | SM DRAM[] mc Mc ["|DRAM
Contr. Contr. Contr. Contr. | ] ] || - ||
I | DRAM [ mc [
I | | |
DRAM DRAM DRAM DRAM DRAML | MC MC | |DRAM CPU
| System System System System | ] ] ]
| Backing Store | CPU CPU DRAM[ | mC :l
L -
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Directory-Based Protocols

Each memory block has a directory entry

rof el ]t S

Directory Entry Per Memory Block

Presence Bits
(one per processor)

Dirty Bit

P+1 bits where P is the number of processors
One dirty bit per directory entry
If dirty bit is on then only one presence bit can be on

Nodes only communicate with other nodes
that have the memory block
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Directory-Based Protocols

Flavors:

- Centralized Directory, Centralized Memory

Poor scalability, but better than bus-based ...

- Decentralized Directory, Distributed Memory

Each node stores small piece of entire directory
corresponding to the memory resident at that node.
Directory queries sent to the node that the address
of the block corresponds to (i.e. its Home Node).

- Clustered

Presence bits are coarse-grained
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Problem with Scalability

What if latency to other procs > latency to local DRAM?

coherence status

transaction request

other processor(s

Processor

—

CPU CPU CPU

I, I I
System

Controller _
memory | <§:
controller E

i

ok

coherence check

read command

coherence -

S

DRAM

CPU CPU

C'nler

mory ~——
controlier4{—_

¥~ read data _—

CPU other CPU

and system
System controller
Controller

memgly
controller |

~—_ .S
\respectlve points

IDRAM|

| DRAM|

of coherence-synchronization




