High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 1

CS-590.26, Spring 2014

High-Speed Memory Systems:
Architecture and Performance Analysis

Coherence
and Consistency

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 2

The Problem is Multi-Fold

Cache Consistency (taken from web-cache community)

In the presence of a cache,
reads and writes behave (to a first order)
no differently than if the cache were not there

Three main issues:
Consistent with backing store
Consistent with self

Consistent with other clients of same backing store

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 3

Consistency w/ Backing Store

For example, write-through vs. write-back

- NdO
Write buffer commonly used
In write-through caches: E S
Backing Store gca -= Backing Store
alllllls
“ E Write Buffer/Cache n E
B B

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 4

Consistency w Self

Virtual cache synonym problem & hardware solutions

- &

H]t

Address Space A

Physical
Memory

—

-

gl

Address Space B

Virtual
Cache

-L

1

Address Space A
—~ 8 o«

Physical
Memory

Direct-Mapped Set-Associative
»I: . Virtual Cache Virtual Cache
(w/ physical tags)

Address Space B

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 5

Consistency w Self

Operating system solutions to aliasing problem

- B

Address Space A
H »

Virtual
Cache

Physical
Memory

=

Address Space B

(a) SPUR and OS/2 solutions

H]L

Physical
Memory

- &

Address Space A

Address Space B

(b) SunOS solution

3

Virtual
Cache

High-Speed
Memory Systems

Soring 2014 Consistency w Self

CS-590.26
Lecture H

Segmentation as a solution to the aliasing problem

32-bit Effective Address
Segno (10 bits){Segment & Page Offsets (22 bits)

Bruce Jacob

University of Crete

SLIDE 6

Segment Registers [«—

52-bit Virtual Address l !

Segment ID (30 bits) Segment & Page Offsets (22 bits)
N\ /
N\ l /
TLB and Cache

Page Table

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 7

Consistency w Self

Segmentation as a solution to the aliasing problem

Process A Process B Process C

Global Virtual Space

Paged /

Segment
NULL
(segment only
. Y partially-used)
Physical Memory |

High-Speed
Memory Systems

Soring 2014 Consistency w Self

CS-590.26
Lecture H

ASID remapping

Bruce Jacob

University of Crete Virtual Address
ASID Virtual Page Number Page Offset
SLIDE 8
TLB ASID VPN PFN
ASID VPN PFN
ASID VPN PFN
Physical Address ¢

y

Page Frame Number Page Offset

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 9

Consistency w Other Clients

l.e. Cache Coherence & various Consistency Models

First, a look at some of the things that can go wrong,
just inside a SINGLE CHIP:

"I_I_l_l_l"

o 0N S e B -

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 10

Proc B reads data from dev A, signals proc C when done

(producer-consumer pair)

Process C (consumer):

global char data[SIZE];
global int ready=0;

while (1) {

while (!ready)

°
4

process(data);
ready = 0;

Process B (producer):

global char data[SIZE];
global int ready=0;

int £fd = open(“dev A");
while (1) {

while (ready)

4

dma(fd, data, SIZE);
ready = 1;

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 11

Proc B reads data from dev A, signals proc C when done
(producer-consumer pair) — more detail

A communicates
A @ with device driver
‘ . B updates synchronization
After ‘ready’ is set to O, ° @ : : ,
@ device A transfers data variable ready’to 1
iInto the memory system
@ B is signaled
via driver
Memory
\L
H H B H E B
4K data buffer Variable ‘done’ 4-byte synchronization
(in driver) variable ‘ready’
A B C
q \\ \ /f' .~ C uses both data buffer and
ata \' \\ / synchronization variable:
while (!ready) // spin
done _ ile (fready) // sp

x = datali]; // read data buffer

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 12

/QQRSlr \

f@\
VS

RYLB

Proc B reads data from dev A, signals proc C when done
(producer-consumer pair)

/0

ﬁ’AEL

' /oy
~ DMIA ﬂ !’, ﬁ

data

driver sync
“ready” variable

data

buffer

buffer

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 13

Proc B reads data from dev A, signals proc C when done

(producer-consumer pair)
PAEL
f l 1 ,
®ans -— 1§ h
data - delayed in DMA 7
driver sync ﬂ
“ready” variable data sent by DMA

data - stale ... arrives too late

/0 -~ DMA

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 14

Proc B reads data from dev A, signals proc C when done

(producer-consumer pair)
f‘"m
i [¢H

/O - DNIA

data held in CTL
driver sync
“ready” variable

data is stale data sent to DRAM

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 15

Problem: causal relationships

N\

A

data \

done

ready Y

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 16

Problem scales with the system size

Solve system linear egs: Xi+1 =AXi+ b

while (!converged) {

doparallel (N) {
int 1 = myid();
Xtemp[i] = b[1];
for (J=0; J<N; J++) {

xtemp[1] += A[1,]J] * X[]J];

}

}

// implicit barrier sync
doparallel (N) {

int 1 = myid();

Xx[1] = xtemp[1];

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 17

Some Consistency Models

Strict Consistency: A read operation shall return the value
written by the most recent store operation.

Sequential Consistency: The result of an execution is the
same as a single interleaving of sequential, program-order
accesses from different processors.

Processor Consistency: Writes from a process are
observed by other clients to be in program order; all clients
observe a single interleaving of writes from different
Processors.

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 18

Strict Consistency

Fails to satisfy strict consistency:

A writes 1

14 At
e
time

Satisfies strict consistency: T

A writes 1 B reads 0

e & -

B reads 1 B reads 1

—

B reads 1

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 19

Sequential Consistency

Fails to satisfy strict consistency:

But satisfies Sequential Consistency

A writes 1
14 .
time >
Satisfies strict con_sistency: _ T T
... and Se(/luentlal Consistency B reads 0 B reads 1
writes 1

e & o

B reads 1 B reads 1

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 20

Sequential Consistency

Handles our earlier problem:

A\\ /(B

data \ |
done Y >
ready >

Note: for this to work, memory controller may reorder

internally, but not externally

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 21

Sequential Consistency

Requirements:

- Everyone can reorder internally but not externally

- All VO & memory references must go through

the same sync point (e.g. memory-mapped I/0O)

- Write of data and driver signal must be same client
- Write buffering presents significant problems

- Reads must be delayed by system latency

... let’s look at this last one more closely

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 22

Really Famous Example (Goodman 1989)

Process Pl: Process P2:
Initially, A=0 Initially, B=0
A=1; B=1;

1f (B==0) { 1f (A==0) {

} kill P2; } kill P1;

Sequential Consistency allows 0 or 1 processes to die
(not both)

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 23

Race-Condition Example

Fails to satisfy sequential consistency:
P1 P2

write A A=1

read B ———»

-

A=1

write B

read A

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 24

Race-Condition Example

Satisfies sequential consistency:

P

write A

read B ————»»

A=1

P2

write B

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 25

Race-Condition Example

In practice:

-+ speculate

- throw exception if problem occurs
HOWEVER — from Jaleel & Jacob [HPCA 2005]-

e |ncreasing the reorder bufter from 80 to 512 entries results Ir
an increase in memory traps by 6x and an increase in tota
execution overhead by 10-40%

e reordering memory instructions increases L1 data cache
accesses by 10-60% and L1 data cache misses by 10-20%

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 26

Processor Consistency

Also called Total Store Order

All writes in program order, reads freely reordered

Both of these scenarios are satisfied in this model:

P1
write A >
read B >

B=1

time

B=1

P2

write B

read A

read B
write A

time

B=1

P2
-

A=1

read A

write B

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 27

Some Other Consistency Models

Partial store order — a processor can freely reorder local
writes with respect to other local writes

Weak consistency — a processor can freely reorder local
writes ahead of local reads

Release consistency — different classes of synchronization
... enforces synchronization only w.r.t. acquire/release
operations. On acquire, memory system updates all
protected variables before continuing; on release, memory
system propagates changes to the protected variables out to
the rest of the system

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 28

Cache Coherence Schemes

Ways to implement a consistency model:
in software (e.g. in virtual memory system, via page table)
iIn hardware
combine hardware & software

The hardware component is called “cache coherence”

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 29

Coherence Implementations

Cache-Block States:

| — Invalid

M — Modified — read-writable, forwardable, dirty
S — Shared — read-only (can be clean or dirty)
E — Exclusive — read-writable, clean

O — Owned — read-only, forwardable, dirty

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 30

Coherence Implementations: Sl

Works with write-through caches

Block is either present (Shared) or not (Invalid)

Problem: Nobody wants
to use write-through caches

Both schemes require broadcast or multicast of
coherence information and/or write data

Note: write-update and sequential consistency don’t
play nice together

High-Speed
Memory Systems

Spring 2014 Coherence Implementations: MSI
Goe 20 Write-back caches: dirty bit (Modified state)

Bruce Jacob mﬂrlte-ni/\r read miss
University of Crete e _ : xmit read miss

= Problem: when the app
reads data and then writes,
sends a second broadcast

~ wiie S
xmit write miss
write hit

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 32

Coherence Implementations: MESI

Reduces write broadcasts

bus invalidate read mlss

Problem: When you ask
for a block, potentially many
clients may respond

. . S bus read-miss
write hit Modified . Shared send cached data
bus read-miss

send cached data

High-Speed
Memory Systems

Soring 2014 Coherence Implementations: MESIF

CS-590.26
Lecture H

Shared broken into two: Shared (1+) and Forwardable (1)

e Jacah Compare MESI (left) vs. MESIF (right):

University of Crete [EETETR s BEEE

SLIDE 33

Problem: All coherence info
goes through central point:
- the backing store

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 34

Coherence Implementations: MOESI

-

[: Invalid -

Load miss from memory

O: Owned

A

Successive stores to a line
shared by another processor.
Broadcast invalidate to all
sharing processors

A

Y

A

Instruction cache miss. or load
miss from another cache

S: Shared [®

Y

Store miss on an
invalidate cache line

-

Request from another

M: Modified

AA

Stored to a shared line.
Broadcast mvalidate to
all sharing processors

E: Exclusive

processor for a modified line

Store to an exclusive line i cache

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Modified

Unique?

Can Silent
Transition to

MESI vs MOESI (AMD) vs MESIF (Intel)

Clean/Dirty

Comments

hMust writeback to share or replace

Bruce Jacob

Exclusive

Transitions to M on wrte

Shared

Does not forward

University of Crete

Invalid

Cannot Read

SLIDE 35

Forwardinc

Modified

Clean/Dirty

Unique?

Can
Forward?

Can Silent
Transition to

Must invalidate other copies to wnte

Comments

Can share without wrnteback

Owned

Must whnteback to transition

Exclusive

Transitions to M on write

Shared

chared can be dirty or clean

Invalid

Modified

Clean/Dirty

Unique?

Can
Forward?

Can Silent
Transition to

Cannot Read

Comments

hMust writeback to share or replace

Exclusive

Transitions to M on wrte

Shared

shared implies clean, can forward

Invalid

Cannot Read

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

UMA
NUMA

Some System Configurations

NdO

]
—

L

1 cPul| [crPul| | cpPu| | cPU cPu| [crPu| | cpPu| | cPU
$ I 1L 1 I I e N e
l B 1
— ' i System & Memory
Controller
_)
©@ Backing Store &% ?5 SyS/Mem
Controller
) DRAM
| Backing System
$ Store
DRAM L
U Backing System
Store
L CPU
——
CPU CPU CPU CPU DRAMY } MC
CPU CPU
C— _ 1 CPU
S/M <> S/M <> S/M <> S/M DRAM| | MC MC | |DRAM
Contr. Contr. Contr. Contr.
DRAM[| mC
DRAM DRAM DRAM DRAM DRAM|[| mMcC MC | |DRAM CPU
System System System System
Backing Store CPU CPU DRAM|[_| MC
_

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bus-Based, Hierarchical

CPU

CPU

Bruce Jacob

=4

- r =

/

University of Crete

/

SLIDE 37

Sys/Mém
Contyoller

Backing

Backing

L Store

/ DRAM
/

Store
L

Even this: [o]

‘DRAMIII MG I:

CPU

‘DRAMIZI MG I:

CPU

High-Speed
Memory Systems

Directory-Based Protocols

Spring 2014

CS-590.26
Lecture H

Can run on any configuration—the main idea is to

eliminate the need to broadcast every coherence event

Bruce Jacob

. . e cPu| |cPu| |cpPu| | cPU cPu| |cPu | |cpPu| | cPU
University of Crete :
E ra4c-c—1l=——tct=9 = rQ&F—1]|— —| F =4 ["
— | System & Memory
SLIDE 38 | I | | Controller
o . D
2 il Backing Store @ % SyS /Mem I
| | Controller |
Il — | DRAM
2 | Backing System
= | DRAM | LS. T ——— _ _ _ 1
esey | Backing System |
Store
L o e e e e e e = - CPU
. g | | N
CPU CPU CPU CPU K DRAME { MC |
CPU CPU
N — :] [] [] CPU
I SIM | | SM | | SM | | SM DRAM[] mc Mc ["|DRAM
Contr. Contr. Contr. Contr. |]] || - ||
I | DRAM [mc [
I | | |
DRAM DRAM DRAM DRAM DRAML | MC MC | |DRAM CPU
| System System System System |]]]
| Backing Store | CPU CPU DRAM[| mC :l
L -

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 39

Directory-Based Protocols

Each memory block has a directory entry

rof el]t S

Directory Entry Per Memory Block

Presence Bits
(one per processor)

Dirty Bit

P+1 bits where P is the number of processors
One dirty bit per directory entry
If dirty bit is on then only one presence bit can be on

Nodes only communicate with other nodes
that have the memory block

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 40

Directory-Based Protocols

Flavors:

- Centralized Directory, Centralized Memory

Poor scalability, but better than bus-based ...

- Decentralized Directory, Distributed Memory

Each node stores small piece of entire directory
corresponding to the memory resident at that node.
Directory queries sent to the node that the address
of the block corresponds to (i.e. its Home Node).

- Clustered

Presence bits are coarse-grained

High-Speed
Memory Systems

Spring 2014

CS-590.26
Lecture H

Bruce Jacob

University of Crete

SLIDE 41

Problem with Scalability

What if latency to other procs > latency to local DRAM?

coherence status

transaction request

other processor(s

Processor

—

CPU CPU CPU

I, I I
System

Controller _
memory | <§:
controller E

i

ok

coherence check

read command

coherence -

S

DRAM

CPU CPU

C'nler

mory ~——
controlier4{—_

¥~ read data _—

CPU other CPU

and system
System controller
Controller

memgly
controller |

~—_ .S
\respectlve points

IDRAM|

| DRAM|

of coherence-synchronization

