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The Problem is Multi-Fold!
Cache Consistency (taken from web-cache community)!

In the presence of a cache,  
reads and writes behave (to a first order)  

no differently than if the cache were not there!

Three main issues:!
• Consistent with backing store!
• Consistent with self!
• Consistent with other clients of same backing store

�2



High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Consistency w/ Backing Store!
For example, write-through vs. write-back!

Write buffer commonly used 
in write-through caches:
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4.1.2 Delayed Write, Driven By the Cache
This policy delays writing the data to the backing 

store until later, where “later” is determined by the 
cache. There are some obvious triggers.

Confl ict-Driven Update
In this policy, the data written into the cache is 

written to the backing store when there is a cache 
confl ict with that block, i.e., data from a written block 
(i.e., a “dirty” block) is written to the backing store 
when another block of data is brought into the cache, 
displacing the dirty block. This is called the write-
back policy. 

There are some obvious benefi ts to using a write-
back policy. The main things are data coalescing 
and reduction of write traffi c, meaning that often-
times, an entire block of data will be overwritten, 
requiring multiple write operations (a cache block 
is usually much larger than the granularity of data 
that a load/store instruction handles). Coalescing 
the write data into a single transfer to the backing 
store is very benefi cial. In addition, studies have 
found that application behavior is such that writes 
to one location are frequently followed by more 

writes to the same location. So, if a location is going 
to be overwritten multiple times, one should not 
bother sending anything but the fi nal version to the 
backing store. 

Nonetheless, write-back causes problems in a 
multi-user scenario (e.g., multiprocessors). Some-
times you will want all of those little writes to the 
same location to be propagated to the rest of the sys-
tem so that the other processors can see your activ-
ity. One can either return to a write-through policy, 
or one can create additional update scenarios driven 
by the backing store, i.e., in the case that the data is 
needed by someone else. This is discussed briefl y in 
the next section and in more detail in Section 4.3.

Capacity-Driven Update
Note that there exist caches in which the concept of 

cache confl icts is hazy at best. Many software caches 
do not implement any organizational structure anal-
ogous to cache sets, and waiting to write data to the 
backing store until the cache is totally full (an event 
that would be analogous to a cache confl ict) may 
be waiting too late. Such a cache might instead use 
a capacity-driven update. In this sort of scenario, for 
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FIGURE 4.1: The use of write buffers and write caches in a write-through policy. (a) The write buffer or write cache is physi-
cally part of the cache, but logically part of the backing store. (b) Shows the implication as more caches become clients of the 
backing store.
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Consistency w Self!
Virtual cache synonym problem & hardware solutions
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locations in a cache, requiring careful cache manage-
ment to keep data inconsistencies from occurring. 

It becomes clear that this feature—shared mem-
ory—breaks the cache model of virtual memory. If 
a single datum is allowed to have several equivalent 
names, then it is possible for the datum to reside in 
a cache at multiple locations. This can easily cause 
inconsistencies, for example, when one writes val-
ues to two different locations that map to the same 
datum. It is for this reason that virtual memory is 
described as a mapping between two namespaces; 
one must remember this when dealing with virtual 
caches. As long as there is a one-to-one mapping 
between data and names, no inconsistencies can 
occur, and the entire virtual memory mechanism 
behaves no differently than a traditional cache hier-
archy. Thus, virtual caches can be used without fear 
of data inconsistencies. As soon as shared memory 
is introduced, the simple cache model becomes 
diffi cult to maintain, because it is very convenient 
for an operating system to allow one-to-many 
namespace mappings. However, as we will see in 
later chapters, there are many tricks one can play 
to keep the cache model and still support shared 
memory.

The Consistency Problem of Virtual Caches
A virtually indexed cache allows the processor 

to use the untranslated virtual address as an index. 
This removes the TLB from the critical path, allow-
ing shorter cycle times and/or a reduced number of 
pipeline stages. However, it introduces the possibil-
ity of data-consistency problems occurring when two 
processes write to the same physical location through 
different virtual addresses; if the pages align differ-
ently in the cache, erroneous results can occur. This 
is called the virtual cache synonym problem [Good-
man 1987]. The problem is illustrated in Figure 4.2; 
a shared physical page maps to different locations 
in two different process-address spaces. The virtual 
cache is larger than a page, so the pages map to differ-
ent locations in the virtual cache. As far as the cache 
is concerned, these are two different pages, not two 

different views of the same page. Thus, if the two pro-
cesses write to the same page at the same time, using 
two different names, then two different values will be 
found in the cache.

Hardware Solutions The synonym problem has 
been solved in hardware using schemes such as dual 
tag sets [Goodman 1987] or back-pointers [Wang 
et al. 1989], but these require complex hardware and 
control logic that can impede high clock rates. One 
can also restrict the size of the cache to the page size 
or, in the case of set-associative caches, similarly 
restrict the size of each cache bin (the size of the cache 
divided by its associativity [Kessler & Hill 1992]) to the 
size of one page. This is illustrated in Figure 4.3; it is 
the solution used in many desktop processors such 
as various PowerPC and Pentium designs. The dis-
advantages are the limitation in cache size and the 
increased access time of a set-associative cache. For 
example, the Pentium and PowerPC architectures 

Address Space A 

BAddress Space B 

Physical
Memory

Virtual
Cache

FIGURE 4.2: The synonym problem of virtual caches. If two 
processes are allowed to map physical pages at arbitrary loca-
tions in their virtual-address spaces, inconsistencies can occur 
in a virtually indexed cache.
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must increase associativity to increase the size of 
their on-chip caches, and both architectures have 
used 8-way set-associative cache designs. Physically 
tagged caches guarantee consistency within a single 
cache set, but this only applies when the virtual syn-
onyms map to the same set.

Software Solutions Wheeler and Bershad describe 
a state-machine approach to reduce the number 
of cache fl ushes required to guarantee consistency 
[1992]. The mechanism allows a page to be mapped 
anywhere in an address space, and the operating sys-
tem maintains correct behavior with respect to cache 
aliasing. The aliasing problem can also be solved 
through policy, as shown in Figure 4.4. For example, 
the SPUR project disallowed virtual aliases altogether 
[Hill et al. 1986]. Similarly, OS/2 locates all shared 
segments at the same address in all processes  [Deitel 
1990]. This reduces the amount of virtual memory 
available to each process, whether the process uses 
the shared segments or not. However, it eliminates 
the aliasing problem entirely and allows pointers to 

be shared between address spaces. SunOS requires 
shared pages to be aligned on cache-size boundar-
ies [Hennessy & Patterson 1990], allowing physical 
pages to be mapped into address spaces at almost 
any location, but ensuring that virtual aliases align in 
the cache. Note that the SunOS scheme only solves 
the problem for direct-mapped virtual caches or 
set-associative virtual caches with physical tags; 
shared data can still exist in two different blocks of 
the same set in an associative, virtually indexed, vir-
tually tagged cache. Single address space operating 
systems such as Opal [Chase et al. 1992a, 1992b] or 
Psyche [Scott et al. 1988] solve the problem by elimi-
nating the concept of individual per-process address 
spaces entirely. Like OS/2, they defi ne a one-to-one 
correspondence of virtual to physical addresses and 
in doing so allow pointers to be freely shared across 
process boundaries. 

Combined Solutions Note that it is possible, using 
a segmented hardware architecture and an appropriate 
software organization, to solve the aliasing problem. 

Address Space A 

Address Space B 

Physical
Memory

Direct-Mapped
Virtual Cache

Set-Associative
Virtual Cache

(w/ physical tags)

OR

FIGURE 4.3: Simple hardware solutions to page aliasing. If the cache is no larger than the page size and direct-mapped, then no 
aliasing can occur. Set-associative caches can be used, provided they have physical tags.
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Operating system solutions to aliasing problem
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The discussion is relatively long, so we have placed it 
in Chapter 31, Section 31.1.7, “Perspective: Segmented 
Addressing Solves the Synonym Problem.” 

An important item to note regarding aliasing and 
set-associative caches is that set associativity is usu-
ally a transparent mechanism (the client is not usually 
aware of it), and the cache is expected to guarantee 
that the implementation of set associativity does 
not break any models. Thus, a set-associative cache 
cannot use virtual tags unless the set associativity is 
exposed to the client. If virtual tags are used by the 
cache, the cache has no way of identifying aliases to 
the same physical block, and so the cache cannot 
guarantee that a block will be unique within a set—
two different references to the same block, using dif-
ferent virtual addresses, may result in the block being 
homed in two different blocks within the same set.

Perspective on Aliasing
Virtual-address aliasing is a necessary evil. It is use-

ful, yet it breaks many simple models. Its usefulness 
outweighs its problems. Therefore, future memory-
management systems must continue to support it.

Virtual-Address Aliasing Is Necessary Most of 
the software solutions for the virtual cache synonym 
problem address the consistency problem by limit-
ing the choices where a process can map a physical 
page in its virtual space. In some cases, the number 
of choices is reduced to one; the page is mapped at 
one globally unique location or it is not mapped at 
all. While disallowing virtual aliases would seem to be 
a simple and elegant way to solve the virtual-cache-
consistency problem, it creates another headache for 
operating systems—virtual fragmentation.

FIGURE 4.4: Synonym problem solved by operating system policy. OS/2 and the operating system for the SPUR processor guar-
antee the consistency of shared data by mandating that shared segments map into every process at the same virtual location. 
SunOS guarantees data consistency by aligning shared pages on cache-size boundaries. The bottom few bits of all virtual page 
numbers mapped to any given physical page will be identical, and the pages will map to the same location in the cache. Note that 
this works best with a direct-mapped cache.

Address Space A 

Address Space B 

Physical
Memory

Virtual
Cache

Address Space A 

Address Space B 

Physical
Memory

Virtual
Cache

(a) SPUR and OS/2 solutions (b) SunOS solution
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pages to physical pages is one-to-one, there are no 
virtual cache synonym problems.

When the synonym problem is eliminated, there is 
no longer a need to fl ush a virtual cache or a TLB for 
consistency reasons. The only time fl ushing is required 
is when virtual segments are remapped to new physi-
cal pages, such as when the operating system runs 
out of unused segment identifi ers and needs to reuse 
old ones. If there is any data left in the caches or TLB 
tagged by the old virtual address, data inconsistencies 
can occur. Direct Memory Access (DMA) also requires 
fl ushing of the affected region before a transaction, as 
an I/O controller does not know whether the data it 
overwrites is currently in a virtual cache.

The issue becomes one of segment granularity. If 
segments represent the granularity of sharing and data 
placement within an address space (but not the gran-
ularity of data movement between memory and disk), 
then segments must be numerous and small. They 
should still be larger than the L1 cache to keep the criti-
cal path between address generation and cache access 
clear. Therefore, the address space should be divided 
into a large number of small segments, for instance, 
1024 4-MB segments, 4096 1-MB segments, etc. 

Disjunct Page Table
Figure 31.15 illustrates an example mechanism. The 

segmentation granularity is 4 MB. The 4-GB address 
space is divided into 1024 segments. This simplifi es 

the design and should make the discussion clear. 
A 4-byte PTE can map a 4-KB page, which can, in turn, 
map an entire 4-MB segment. The “disjunct” page 
table organization uses a single global table to map 
the entire 52-bit segmented virtual-address space yet 
gives each process-address space its own addressing 
scope. Any single process is mapped onto 4 GB of this 
global space, and so it requires 4 MB of the global table 
at any given moment (this is easily modifi ed to sup-
port MIPS-style addressing in which the user process 
owns only half the 4 GB [Kane & Heinrich 1992]). The 
page table organization is pictured in Figure 31.16. It 
shows the global table as a 4-TB linear structure at the 
top of the global virtual-address space, composed of 
230 4-KB PTE pages that each map a 4-MB segment. If 
each user process has a 4-MB address space, the user 
space can be mapped by 1024 PTE pages in the global 
page table. These 1024 PTE pages make up a user 
page table, a disjunct set of virtual pages at the top 
of the global address space. These 1024 pages can be 
mapped by 1024 PTEs—a collective structure small 
enough to wire down in physical memory for every 
running process (4 KB, if each is 4 bytes). This struc-
ture is termed the per-user root page table in Figure 
31.16. In addition, there must be a table for every pro-
cess containing 1024 segment IDs and per-segment 
protection information. 

Global Virtual Space 

Process A Process B Process C 

Physical Memory

NULL
(segment only
partially-used)

Paged
Segment 

FIGURE 31.14: The use of segments to provide virtual-address 
aliasing.

TLB and
Page Table 

32-bit Effective Address

Segno (10 bits) Segment & Page Offsets (22 bits)

Segment Registers

Segment & Page Offsets (22 bits)Segment ID (30 bits)

52-bit Virtual Address 

Cache

FIGURE 31.15: Segmentation mechanism used in discussion.
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pages to physical pages is one-to-one, there are no 
virtual cache synonym problems.

When the synonym problem is eliminated, there is 
no longer a need to fl ush a virtual cache or a TLB for 
consistency reasons. The only time fl ushing is required 
is when virtual segments are remapped to new physi-
cal pages, such as when the operating system runs 
out of unused segment identifi ers and needs to reuse 
old ones. If there is any data left in the caches or TLB 
tagged by the old virtual address, data inconsistencies 
can occur. Direct Memory Access (DMA) also requires 
fl ushing of the affected region before a transaction, as 
an I/O controller does not know whether the data it 
overwrites is currently in a virtual cache.

The issue becomes one of segment granularity. If 
segments represent the granularity of sharing and data 
placement within an address space (but not the gran-
ularity of data movement between memory and disk), 
then segments must be numerous and small. They 
should still be larger than the L1 cache to keep the criti-
cal path between address generation and cache access 
clear. Therefore, the address space should be divided 
into a large number of small segments, for instance, 
1024 4-MB segments, 4096 1-MB segments, etc. 

Disjunct Page Table
Figure 31.15 illustrates an example mechanism. The 

segmentation granularity is 4 MB. The 4-GB address 
space is divided into 1024 segments. This simplifi es 

the design and should make the discussion clear. 
A 4-byte PTE can map a 4-KB page, which can, in turn, 
map an entire 4-MB segment. The “disjunct” page 
table organization uses a single global table to map 
the entire 52-bit segmented virtual-address space yet 
gives each process-address space its own addressing 
scope. Any single process is mapped onto 4 GB of this 
global space, and so it requires 4 MB of the global table 
at any given moment (this is easily modifi ed to sup-
port MIPS-style addressing in which the user process 
owns only half the 4 GB [Kane & Heinrich 1992]). The 
page table organization is pictured in Figure 31.16. It 
shows the global table as a 4-TB linear structure at the 
top of the global virtual-address space, composed of 
230 4-KB PTE pages that each map a 4-MB segment. If 
each user process has a 4-MB address space, the user 
space can be mapped by 1024 PTE pages in the global 
page table. These 1024 PTE pages make up a user 
page table, a disjunct set of virtual pages at the top 
of the global address space. These 1024 pages can be 
mapped by 1024 PTEs—a collective structure small 
enough to wire down in physical memory for every 
running process (4 KB, if each is 4 bytes). This struc-
ture is termed the per-user root page table in Figure 
31.16. In addition, there must be a table for every pro-
cess containing 1024 segment IDs and per-segment 
protection information. 

Global Virtual Space 

Process A Process B Process C 

Physical Memory

NULL
(segment only
partially-used)

Paged
Segment 

FIGURE 31.14: The use of segments to provide virtual-address 
aliasing.

TLB and
Page Table 

32-bit Effective Address

Segno (10 bits) Segment & Page Offsets (22 bits)

Segment Registers

Segment & Page Offsets (22 bits)Segment ID (30 bits)

52-bit Virtual Address 

Cache

FIGURE 31.15: Segmentation mechanism used in discussion.
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PA-RISC’s table or the 8-way PTE cache of 
the PowerPC architecture. One possible 
implementation of the class is shown in 
 Figure 31.21.
Single-Owner, Multiple-ID This archi-
tecture is not segmented but has multiple 
protection IDs associated with each process 
and/or each page. The PA-RISC can be used 
in this manner. If multiple IDs are associ-
ated with each page, each TLB entry could 
be shared by all the processes with which 
the page is associated. A TLB entry would 
have several available slots for protection 
IDs, requiring more chip area but alleviat-
ing the problem of multiple TLB entries 
per physical page. Alternatively, if there 
were multiple IDs associated with each 
process and not with each page (this is like 
the scheme used in PA-RISC), a different 
ID could be created for every instance of a 

•

shared region, indicating the “identity” of 
the group that collectively owns the region. 
One possible implementation of the class is 
shown in Figure 31.22.
Multiple-Owner, No ID This is the basic seg-
mented architecture that maps user addresses 
onto a global address space at the granularity 
of segments. This is how the  PowerPC archi-
tecture is designed, and it is how the Pentium 
segmentation mechanism can be used. If the 
Pentium’s 4-GB linear address space were 
treated as a global space to be shared a seg-
ment at a time, the segmentation mechanism 
would be an effective protection mechanism, 
obviating the need to fl ush the TLB on context 
switch. If the segment registers are protected 
from modifi cation by user-level processes, no 
protection identifi ers are necessary. One pos-
sible implementation of the class is shown in 
Figure 31.23.

•

Virtual Page Number Page Offset

VPN PFN

VPN PFN

… …

VPN PFN

Page Frame Number Page Offset

Virtual Address

Physical Address

ASID

ASID

ASID

…

ASID

TLB

FIGURE 31.21: An implementation of a single-owner, single-ID architecture. The ASID acts as a process ID.

Virtual Page Number Page Offset

VPN PFN

VPN PFN

… …
VPN PFN

Page Frame Number Page Offset

Virtual Address

Physical Address

ID

ID

ID

…

ID

TLB

ID
ID
IDID Set

(represents a set
of capabilities)

FIGURE 31.22: An implementation of a single-owner, multiple-ID architecture. Each ID in the ID set is compared against every ID 
in the TLB to find a match. If any match succeeds, the result is a TLB hit.
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i.e. Cache Coherence & various Consistency Models!

First, a look at some of the things that can go wrong, 
just inside a SINGLE CHIP:
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(producer-consumer pair)
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Process C (consumer):!
"
global char data[SIZE];!
global int ready=0;!
"
while (1) {!
"
! ! while (!ready)  
! ! ! ! ;!
"
! ! process( data );!
! ! ready = 0;!
"
}

Process B (producer):!
"
global char data[SIZE];!
global int ready=0;!
"
int fd = open(“dev A”);!
"
while (1) {!
"
! ! while (ready)  
! ! ! ! ;!
"
! ! dma( fd, data, SIZE );!
! ! ready = 1;!
"
}
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Proc B reads data from dev A, signals proc C when done  
(producer-consumer pair) — more detail
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would be hard pressed to deduce causality between 
the events), in this picture the memory system 
observes all of the relevant events. In particular, the 
following event orderings are seen in a sequentially 
consistent system:

 1. A writes data, followed by A writing done 
(seen by A and thus seen by all)

 2. A writes done, followed by B reading done 
or some other variable written by the device 
driver (seen by device driver and B and thus 
seen by all)

B

A

C

4K data buffer

1

3 B is signaled

4 B updates synchronization After ‘ready’ is set to 0,
device A transfers data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

5 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

into the memory system

Variable ‘done’
(in driver)

2 A communicates
with device driver

via driver

… …

FIGURE 4.10: Race condition example, more detail. The previous model ignored (intentionally) the method by which device 
A communicates to process B: the device driver. Communication with the device driver is through the memory system—
memory locations and/or memory-mapped I/O registers.

data

ready

A B C

(a)

data

done

A B C

(b)

ready

FIGURE 4.11: Realistic picture of data movement and causality. In (a), information propagates directly from A to B without  going 
through the memory system. Because the memory system does not observe the information, it cannot deduce causality, and 
thus it is possible for A’s write to data to be delayed until after C’s read of data. In reality, A and B are most likely to communi-
cate through a device driver. Assume that the driver has a variable called “done;” (b) shows the picture of data movement and 
 causality that makes sequential consistency work for this scenario.
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DMA CTL Core Core…GPU

DRAM

I/O

3
5

1data buffer

2

driver sync

4

“ready” variable

6

data buffer
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Proc B reads data from dev A, signals proc C when done  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1data - delayed in DMA

2

driver sync

4

“ready” variable

6

data - stale

7
data sent by DMA  
… arrives too late
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Proc B reads data from dev A, signals proc C when done  
(producer-consumer pair)
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7
data sent to DRAM



High-Speed  
Memory Systems"

Spring 2014"

CS-590.26  
Lecture H"

Bruce Jacob"

University of Crete

SLIDE

Problem: causal relationships

�15

236 Memory Systems: Cache, DRAM, Disk

would be hard pressed to deduce causality between 
the events), in this picture the memory system 
observes all of the relevant events. In particular, the 
following event orderings are seen in a sequentially 
consistent system:

 1. A writes data, followed by A writing done 
(seen by A and thus seen by all)

 2. A writes done, followed by B reading done 
or some other variable written by the device 
driver (seen by device driver and B and thus 
seen by all)

B

A

C

4K data buffer

1

3 B is signaled

4 B updates synchronization After ‘ready’ is set to 0,
device A transfers data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

5 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

into the memory system

Variable ‘done’
(in driver)

2 A communicates
with device driver

via driver

… …

FIGURE 4.10: Race condition example, more detail. The previous model ignored (intentionally) the method by which device 
A communicates to process B: the device driver. Communication with the device driver is through the memory system—
memory locations and/or memory-mapped I/O registers.

data

ready

A B C

(a)

data

done

A B C

(b)

ready

FIGURE 4.11: Realistic picture of data movement and causality. In (a), information propagates directly from A to B without  going 
through the memory system. Because the memory system does not observe the information, it cannot deduce causality, and 
thus it is possible for A’s write to data to be delayed until after C’s read of data. In reality, A and B are most likely to communi-
cate through a device driver. Assume that the driver has a variable called “done;” (b) shows the picture of data movement and 
 causality that makes sequential consistency work for this scenario.
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Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 247

each cache block in a data structure associated with 
that cache block. The data structure contains such 
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in 
a directory, which can be centralized or distributed; 
when a client makes a request for a cache block, its 
corresponding directory entry is fi rst consulted to 
determine the appropriate course of action. 

A snoop-based scheme uses no such per-block 
data structure. Instead, the appropriate course of 
action is determined by consulting every client in the 
system. On every request, each cache in the system 
is consulted and responds with information on the 
requested block; the collected information indicates 
the appropriate response. For instance, rather than 
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of 
the block actively responds to a coherence broadcast, 

indicating ownership and returning the requested 
data (if such is the appropriate response). 

Snoopy Protocols
In a snoopy protocol, all coherence-related activity 

is broadcast to all processors. All processors analyze 
all activity, and each reacts to the information pass-
ing through the system based on the contents of its 
caches. For example, if one processor is writing to a 
given data cache line, and another processor has a 
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing 
the block, the fi rst processor now has a dirty copy. If 
the second processor then makes a read request to 
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of 
a common bus for their implementation, but they 
need not use common busses if there is agreement 
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FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In 
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed 
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the 
bottom left.
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Solve! system linear eqs: xi+1 = Axi + b!
"
while (!converged) {!
! ! doparallel(N) {!
! ! ! ! int i = myid();!
! ! ! ! xtemp[i] = b[i];!
! ! ! ! for (j=0; j<N; j++) {!
! ! ! ! ! ! xtemp[i] += A[i,j] * x[j];!
! ! ! ! }!
! ! }  
! ! // implicit barrier sync!
! ! doparallel(N) {!
! ! ! ! int i = myid();!
! ! ! ! x[i] = xtemp[i];!
! ! }!
}
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Some Consistency Models!
Strict Consistency: A read operation shall return the value 
written by the most recent store operation.	



Sequential Consistency: The result of an execution is the 
same as a single interleaving of sequential, program-order 
accesses from different processors.	



Processor Consistency: Writes from a process are 
observed by other clients to be in program order; all clients 
observe a single interleaving of writes from different 
processors.
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 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets 
stolen from Tanenbaum [1995]): 

Strict Consistency: A read operation shall 
return the value written by the most recent store 
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of 
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process 
are observed by other clients to be in program 
order; all clients observe a single interleaving of 
writes from different processors.

The following sections describe these in more 
detail. 

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which 
most programs are written. The basic tenet is

A read operation shall return the value written 
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates 
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model 
is intuitively appealing. If any process has written a 
value to a variable, the next read to that variable will 
return the value written. The model is unrealistic for 
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or 
some realistic channel with non-zero latency, then 
how does one support such a model? The “most recent 
store” defi nition causes non-trivial problems. Suppose 
B performs a read to the same location a fraction of 
a second (“∆t” in the fi gure) after A’s write operation. 
If the time-of-fl ight between two processors is longer 
than the “fraction of a second” timing between the 
write and following read, then there is no means for 
B even to know of the write event at the moment its 
read request is issued. Such a system will not be strictly 
consistent unless it has hardware or software support7 
to prevent such race conditions, and such support will 
most likely degrade the performance of the common 
case. 

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and 
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the 

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks, 
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.
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 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets 
stolen from Tanenbaum [1995]): 

Strict Consistency: A read operation shall 
return the value written by the most recent store 
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of 
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process 
are observed by other clients to be in program 
order; all clients observe a single interleaving of 
writes from different processors.

The following sections describe these in more 
detail. 

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which 
most programs are written. The basic tenet is

A read operation shall return the value written 
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates 
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model 
is intuitively appealing. If any process has written a 
value to a variable, the next read to that variable will 
return the value written. The model is unrealistic for 
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or 
some realistic channel with non-zero latency, then 
how does one support such a model? The “most recent 
store” defi nition causes non-trivial problems. Suppose 
B performs a read to the same location a fraction of 
a second (“∆t” in the fi gure) after A’s write operation. 
If the time-of-fl ight between two processors is longer 
than the “fraction of a second” timing between the 
write and following read, then there is no means for 
B even to know of the write event at the moment its 
read request is issued. Such a system will not be strictly 
consistent unless it has hardware or software support7 
to prevent such race conditions, and such support will 
most likely degrade the performance of the common 
case. 

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and 
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the 

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks, 
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.
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 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets 
stolen from Tanenbaum [1995]): 

Strict Consistency: A read operation shall 
return the value written by the most recent store 
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of 
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process 
are observed by other clients to be in program 
order; all clients observe a single interleaving of 
writes from different processors.

The following sections describe these in more 
detail. 

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which 
most programs are written. The basic tenet is

A read operation shall return the value written 
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates 
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model 
is intuitively appealing. If any process has written a 
value to a variable, the next read to that variable will 
return the value written. The model is unrealistic for 
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or 
some realistic channel with non-zero latency, then 
how does one support such a model? The “most recent 
store” defi nition causes non-trivial problems. Suppose 
B performs a read to the same location a fraction of 
a second (“∆t” in the fi gure) after A’s write operation. 
If the time-of-fl ight between two processors is longer 
than the “fraction of a second” timing between the 
write and following read, then there is no means for 
B even to know of the write event at the moment its 
read request is issued. Such a system will not be strictly 
consistent unless it has hardware or software support7 
to prevent such race conditions, and such support will 
most likely degrade the performance of the common 
case. 

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and 
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the 

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks, 
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.
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 following are some of the most commonly used mod-
els for the behavior of the memory system (tenets 
stolen from Tanenbaum [1995]): 

Strict Consistency: A read operation shall 
return the value written by the most recent store 
operation.

Sequential Consistency: The result of an execu-
tion is the same as a single interleaving of 
sequential, program-order accesses from differ-
ent processors.

Processor Consistency: Writes from a process 
are observed by other clients to be in program 
order; all clients observe a single interleaving of 
writes from different processors.

The following sections describe these in more 
detail. 

Strict Consistency
Strict consistency is the model traditionally pro-

vided by uniprocessors, and it is the model for which 
most programs are written. The basic tenet is

A read operation shall return the value written 
by the most recent store operation.

This is illustrated in Figure 4.8, which demonstrates 
the inherent problem with the model: it is not realis-
tic in a multiprocessor sense. Nonetheless, the model 
is intuitively appealing. If any process has written a 
value to a variable, the next read to that variable will 
return the value written. The model is unrealistic for 
multiprocessors in that it fails to account for any com-
munication latency: if A and B are on different proces-
sors and must communicate via a bus or network or 
some realistic channel with non-zero latency, then 
how does one support such a model? The “most recent 
store” defi nition causes non-trivial problems. Suppose 
B performs a read to the same location a fraction of 
a second (“∆t” in the fi gure) after A’s write operation. 
If the time-of-fl ight between two processors is longer 
than the “fraction of a second” timing between the 
write and following read, then there is no means for 
B even to know of the write event at the moment its 
read request is issued. Such a system will not be strictly 
consistent unless it has hardware or software support7 
to prevent such race conditions, and such support will 
most likely degrade the performance of the common 
case. 

As mentioned, a strictly consistent memory sys-
tem behaves like a uniprocessor memory system, and 
note that it would, indeed, solve the problem demon-
strated in Figure 4.6. Because C’s read to the data buf-
fer cannot happen before A has fi nished writing the 

time

A writes 1

B reads 0 B reads 1

time

A writes 1

B reads 1 B reads 1

Fails to satisfy strict consistency: Satisfies strict consistency:

∆t∆t

FIGURE 4.8: Strict consistency. Each timeline shows a sequence of read/write events to a particular location. For strict consis-
tency to hold, B must read what A wrote to a given memory location, regardless of how little time passes between the events.

7For instance, numerous schemes exist that maintain time in a distributed system, including virtual clocks, causal clocks, 
broadcasts and revocations, timestamps, etc. So there are numerous ways to support such a scheme.
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Sequential Consistency!
Handles our earlier problem:!

"

"

"

"

"

 
Note: for this to work, memory controller may reorder 
internally, but not externally
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would be hard pressed to deduce causality between 
the events), in this picture the memory system 
observes all of the relevant events. In particular, the 
following event orderings are seen in a sequentially 
consistent system:

 1. A writes data, followed by A writing done 
(seen by A and thus seen by all)

 2. A writes done, followed by B reading done 
or some other variable written by the device 
driver (seen by device driver and B and thus 
seen by all)

B

A

C

4K data buffer

1

3 B is signaled

4 B updates synchronization After ‘ready’ is set to 0,
device A transfers data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

5 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

into the memory system

Variable ‘done’
(in driver)

2 A communicates
with device driver

via driver

… …

FIGURE 4.10: Race condition example, more detail. The previous model ignored (intentionally) the method by which device 
A communicates to process B: the device driver. Communication with the device driver is through the memory system—
memory locations and/or memory-mapped I/O registers.

data

ready

A B C

(a)

data

done

A B C

(b)

ready

FIGURE 4.11: Realistic picture of data movement and causality. In (a), information propagates directly from A to B without  going 
through the memory system. Because the memory system does not observe the information, it cannot deduce causality, and 
thus it is possible for A’s write to data to be delayed until after C’s read of data. In reality, A and B are most likely to communi-
cate through a device driver. Assume that the driver has a variable called “done;” (b) shows the picture of data movement and 
 causality that makes sequential consistency work for this scenario.
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Sequential Consistency!
Requirements:!
• Everyone can reorder internally but not externally!
• All I/O & memory references must go through  

the same sync point (e.g. memory-mapped I/O)!
• Write of data and driver signal must be same client!
• Write buffering presents significant problems!
• Reads must be delayed by system latency!

… let’s look at this last one more closely 
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Really Famous Example (Goodman 1989)!
"

"

"

"

"

"

Sequential Consistency allows 0 or 1 processes to die!

! (not both)

�22

Process P1:!
"
Initially, A=0!
"
A=1;!
"
if (B==0) {!
! ! kill P2;!
}

Process P2:!
"
Initially, B=0!
"
B=1;!
"
if (A==0) {!
! ! kill P1;!
}
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industry trend toward multi-cores on-chip 
may make this scheme viable, at least in 
providing a locally consistent (chip-wide 
consistent) cache system. 
A similar implication arises from study-
ing Hennessy and Patterson’s example, 
originally proposed by Goodman [1989], in 
which a symmetric race condition occurs 
between two simultaneously executing 
processes, P1 and P2:

P1: (initially, A=0) P2: (initially, B=0)
A=1; B=1;
if (B==0) { if (A==0) {

kill P2; kill P1;
} }

A sequentially consistent memory system 
will allow 0 or 1 processes to be killed, but not 
both. For instance, P1 will only try to kill P2 
if P1’s read to B occurs before P2’s write to B. 
By the defi nition of sequential consistency 
(which stipulates the in-order execution of 
memory events), this would imply that P1’s 
write to A must come before P2’s read of A. 
The symmetric argument holds equally well. 

•

The implication for an implementation of 
this model is illustrated in Figure 4.12: not 
only must writes not be buffered (as men-
tioned in the previous bullet), but reads must 
be delayed long enough for write informa-
tion to propagate to the rest of the system. 
To ensure that two processes synchronize 
their memory events in a way that ensures 
sequential consistency, an implementation 
must do one of two things: either (i) block all 
subsequent memory operations following a 
write until all processor cores have observed 
the write event or (ii) allow bypassing and/
or early execution of memory instructions 
subsequent to the write operation, but hold 
their commitment until long enough after 
the write operation to ensure that all proces-
sor cores can observe the write. The implica-
tion of speculative bypassing is that if in the 
meantime a write is observed originating 
from another core that confl icts with an early 
executing memory operation, that instruc-
tion’s commitment must be halted, its results 
must be discarded, and the instruction must 
be reexecuted in light of the new data. 

Fails to satisfy sequential consistency: Satisfies sequential consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read AB=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.12: Sequential consistency and racing threads. A memory system that satisfi es sequential consistency must delay all 
memory operations following a write until the write is observed by all other clients. Otherwise, it would be possible to have both 
P1 and P2 try to kill each other (as in the scenario on the left), which is disallowed by the sequential model. For example, the 
earliest that a subsequent read can follow a write is the message-propagation time within the system. Alternatively, a processor 
can speculate, allowing reads to execute early and patching up if problems are later detected.
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industry trend toward multi-cores on-chip 
may make this scheme viable, at least in 
providing a locally consistent (chip-wide 
consistent) cache system. 
A similar implication arises from study-
ing Hennessy and Patterson’s example, 
originally proposed by Goodman [1989], in 
which a symmetric race condition occurs 
between two simultaneously executing 
processes, P1 and P2:

P1: (initially, A=0) P2: (initially, B=0)
A=1; B=1;
if (B==0) { if (A==0) {

kill P2; kill P1;
} }

A sequentially consistent memory system 
will allow 0 or 1 processes to be killed, but not 
both. For instance, P1 will only try to kill P2 
if P1’s read to B occurs before P2’s write to B. 
By the defi nition of sequential consistency 
(which stipulates the in-order execution of 
memory events), this would imply that P1’s 
write to A must come before P2’s read of A. 
The symmetric argument holds equally well. 

•

The implication for an implementation of 
this model is illustrated in Figure 4.12: not 
only must writes not be buffered (as men-
tioned in the previous bullet), but reads must 
be delayed long enough for write informa-
tion to propagate to the rest of the system. 
To ensure that two processes synchronize 
their memory events in a way that ensures 
sequential consistency, an implementation 
must do one of two things: either (i) block all 
subsequent memory operations following a 
write until all processor cores have observed 
the write event or (ii) allow bypassing and/
or early execution of memory instructions 
subsequent to the write operation, but hold 
their commitment until long enough after 
the write operation to ensure that all proces-
sor cores can observe the write. The implica-
tion of speculative bypassing is that if in the 
meantime a write is observed originating 
from another core that confl icts with an early 
executing memory operation, that instruc-
tion’s commitment must be halted, its results 
must be discarded, and the instruction must 
be reexecuted in light of the new data. 

Fails to satisfy sequential consistency: Satisfies sequential consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read AB=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.12: Sequential consistency and racing threads. A memory system that satisfi es sequential consistency must delay all 
memory operations following a write until the write is observed by all other clients. Otherwise, it would be possible to have both 
P1 and P2 try to kill each other (as in the scenario on the left), which is disallowed by the sequential model. For example, the 
earliest that a subsequent read can follow a write is the message-propagation time within the system. Alternatively, a processor 
can speculate, allowing reads to execute early and patching up if problems are later detected.
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Race-Condition Example!
In practice:!
• speculate!
• throw exception if problem occurs!

HOWEVER — from Jaleel & Jacob [HPCA 2005]:!
• increasing the reorder buffer from 80 to 512 entries results in 

an increase in memory traps by 6x and an increase in total 
execution overhead by 10–40%!

• reordering memory instructions increases L1 data cache 
accesses by 10–60% and L1 data cache misses by 10–20%
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Processor Consistency!
Also called Total Store Order!

All writes in program order, reads freely reordered!

Both of these scenarios are satisfied in this model:
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As the last two bullets attest, in a sequentially 
consistent memory system, write performance will 
be abysmal and read performance will suffer, or 
the implementation will embody signifi cant com-
plexity to avoid the performance limitations of the 
model.

Processor Consistency
So how does one avoid the limitations of a sequen-

tially consistent memory system? A further relaxation 
of memory consistency is called processor consis-
tency [Goodman 1989], also called total store order. 
Its basic tenet is

Writes from a process are observed by other 
clients to be in program order; all clients 
observe a single interleaving of writes from 
different processors.

This simply removes the read-ordering restriction 
imposed by sequential consistency: a processor is 
free to reorder reads ahead of writes without waiting 
for write data to be propagated to other clients in the 
system. The racing threads example, if executed on an 
implementation of processor consistency, can result in 
both processes killing each other: reads need not block 
on preceding writes; they may even execute ahead 

of  preceding writes (see Figure 4.13). Similarly, the 
 example illustrated in Figures 4.10 and 4.11 could easily 
result in unexpected behavior: processor consistency 
allows reads to go as early as desired, which would allow 
C’s read of the data buffer to proceed before C’s read of 
the variable ready fi nishes (consider, for example, the 
scenario in which the conditional branch on the value 
of ready is predicted early and correctly):

if (ready) {
 read data buffer
}

Ensuring correct behavior in such a consistency 
model requires the use of explicit release/acquire 
mechanisms (e.g., see Hennessy and Patterson [1996] 
for example code) in the update of either the device 
driver variable done or the variable ready. 

Other Consistency Models
This might seem all that is necessary, but there are 

many further relaxations. For instance,

Partial store order allows a processor to 
freely reorder local writes with respect to 
other local writes.
Weak consistency allows a processor to freely 
reorder local writes ahead of local reads. 

•

•

Satisfies processor consistency: Satisfies processor consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read A

B=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.13: Processor consistency and racing threads. Processor consistency allows each processor or client within the sys-
tem to reorder freely reads with respect to writes. As a result, the racing threads example can easily result in both processes 
trying to kill each other (both diagrams illustrate that outcome).
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As the last two bullets attest, in a sequentially 
consistent memory system, write performance will 
be abysmal and read performance will suffer, or 
the implementation will embody signifi cant com-
plexity to avoid the performance limitations of the 
model.

Processor Consistency
So how does one avoid the limitations of a sequen-

tially consistent memory system? A further relaxation 
of memory consistency is called processor consis-
tency [Goodman 1989], also called total store order. 
Its basic tenet is

Writes from a process are observed by other 
clients to be in program order; all clients 
observe a single interleaving of writes from 
different processors.

This simply removes the read-ordering restriction 
imposed by sequential consistency: a processor is 
free to reorder reads ahead of writes without waiting 
for write data to be propagated to other clients in the 
system. The racing threads example, if executed on an 
implementation of processor consistency, can result in 
both processes killing each other: reads need not block 
on preceding writes; they may even execute ahead 

of  preceding writes (see Figure 4.13). Similarly, the 
 example illustrated in Figures 4.10 and 4.11 could easily 
result in unexpected behavior: processor consistency 
allows reads to go as early as desired, which would allow 
C’s read of the data buffer to proceed before C’s read of 
the variable ready fi nishes (consider, for example, the 
scenario in which the conditional branch on the value 
of ready is predicted early and correctly):

if (ready) {
 read data buffer
}

Ensuring correct behavior in such a consistency 
model requires the use of explicit release/acquire 
mechanisms (e.g., see Hennessy and Patterson [1996] 
for example code) in the update of either the device 
driver variable done or the variable ready. 

Other Consistency Models
This might seem all that is necessary, but there are 

many further relaxations. For instance,

Partial store order allows a processor to 
freely reorder local writes with respect to 
other local writes.
Weak consistency allows a processor to freely 
reorder local writes ahead of local reads. 

•

•

Satisfies processor consistency: Satisfies processor consistency:

P1 P2

write A

read B

time

write B

read A

P1 P2

write A

read B

time

write B

read A

B=1

A=1

B=1

B=1

A=1 A=1

A=1

B=1

FIGURE 4.13: Processor consistency and racing threads. Processor consistency allows each processor or client within the sys-
tem to reorder freely reads with respect to writes. As a result, the racing threads example can easily result in both processes 
trying to kill each other (both diagrams illustrate that outcome).
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Some Other Consistency Models!
Partial store order — a processor can freely reorder local 
writes with respect to other local writes!

Weak consistency — a processor can freely reorder local 
writes ahead of local reads!

Release consistency — different classes of synchronization 
… enforces synchronization only w.r.t. acquire/release 
operations. On acquire, memory system updates all 
protected variables before continuing; on release, memory 
system propagates changes to the protected variables out to 
the rest of the system
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Cache Coherence Schemes!
Ways to implement a consistency model:!
• in software (e.g. in virtual memory system, via page table)"
• in hardware!
• combine hardware & software!

The hardware component is called “cache coherence”
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Coherence Implementations!
Cache-Block States:!

I — Invalid!

M — Modified — read-writable, forwardable, dirty!

S — Shared — read-only (can be clean or dirty)!

E — Exclusive — read-writable, clean!

O — Owned — read-only, forwardable, dirty	
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Coherence Implementations: SI!
Works with write-through caches!

Block is either present (Shared) or not (Invalid)!

Write operations cause one of two results:!
• write-invalidate (only one writable copy extant)!
• write-update (can have multiple writers)!

Both schemes require broadcast or multicast of 
coherence information and/or write data!

Note: write-update and sequential consistency don’t 
play nice together

�30 Problem: Nobody wants  
to use write-through caches
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Coherence Implementations: MSI!
Write-back caches: dirty bit (Modified state)

�31

242 Memory Systems: Cache, DRAM, Disk

extremely hard to implement: to guarantee that all 
clients see all operations in the same order, an imple-
mentation must guarantee that all update messages 
are interleaved with all other system-wide coherence 
messages in the same order for all nodes. While sys-
tems exist that do this (e.g., ISIS [Birman & Joseph 
1987]), they tend to be relatively slow.

Using Write-Back Caches (MSI)
To reduce bandwidth requirements, one can 

change the scheme slightly (use write-back caches 
instead of write-through caches) and not propagate 
write data immediately. The scheme exploits write-
coalescing in the data caches: multiple writes to the 
same cache block will not necessarily generate mul-
tiple coherence broadcasts to the system; rather, 
coherence messages will only be sent out when the 
written block is removed from the cache. Unlike the 
write-through scenario, in this scheme, data in a par-
ticular cache may be out of sync with the backing 
store and the other clients in the system. The imple-
mentation must ensure that this allows no situations 
that would be deemed incorrect by the chosen con-
sistency model. Figure 4.15 illustrates a possible state 
machine for the implementation.

Whereas a write-through cache is permitted to 
evict a block silently at any time (e.g., to make room 

for incoming data), a write-back cache must fi rst 
update the backing store before evicting a block, if 
the evicted block contains newer data than the back-
ing store. To handle this, the cache must add a new 
state, Modifi ed, to keep track of which blocks are 
dirty and must be written back to the backing store. 
As with the write-through example, writes may be 
handled with either a write-update or write-invali-
date policy. 

MSI-protocol implementations typically require 
that reads to Invalid blocks (i.e., read misses) fi rst 
ensure that no other client holds a Modifi ed copy of 
the requested block and that a cache with a Modifi ed 
block returns the written data to a requestor immedi-
ately. A write request to a Shared or Invalid block must 
fi rst notify all other client caches so that they can 
change their local copies of the block to the Invalid 
state. These steps ensure that the most recently writ-
ten data in the system is relayed to any client that 
wants to read the block. While this mirrors the read-
modify-write nature of many data accesses, it forces 
the process to require two steps in all instances. 

In particular, when an MSI client acquires a block on 
a read miss, the block is acquired in the Shared state, 
and to write it the client must then follow this with a 
write-invalidate broadcast so that it can place the block 
in the Modifi ed state and overwrite the block with new 
data. In an alternative MSI implementation, all reads 

Invalid

bus read-miss
bus write-miss

send cached data

bus write-miss

Shared

Modified

write hit
xmit write miss

write hit

write miss
xmit write miss

read miss
xmit read miss

(acts as invalidate msg)

FIGURE 4.15: State machine for an MSI protocol [based on Archibald and Baer 1986]. Boldface font indicates observed action 
(e.g., local write miss to block in question, or a bus transaction from another cache on a block address matching in the local tags). 
Regular font indicates response action taken by local cache.
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Coherence Implementations: MESI!
Reduces write broadcasts
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could use a write-invalidate broadcast to acquire all 
read blocks in a Modifi ed state, just in case they might 
wish to write them later. This latter approach, while 
reducing the broadcast messages required for a write 
operation, would eliminate the possibility of real read-
sharing (every block would be cached in, at most, one 
place). In addition, even if the block is not, in fact, mod-
ifi ed by the requesting client, the fact that it is acquired 
in the Modifi ed state implies that it must be written 
back to the backing store upon eviction, thereby turn-
ing all memory operations into de facto writes. 

Alternatively, the addition of the Exclusive state 
solves the same problem: a MESI protocol provides 
another mechanism for acquiring read data that 
requires no global update or broadcast request when 
the client chooses to write the acquired block.

Reducing Write Broadcasts (MESI)
To provide a lower overhead write mechanism, 

the Exclusive state is added to the system’s write-
back caches. A client in the system may not write to a 
cache block unless it fi rst acquires a copy of the block 
in the Exclusive state, and only one system-wide copy 
of that block may be marked Exclusive. Even if a cli-
ent has a readable copy of the block in its data cache 
(e.g., in the Shared state), the client may not write the 
block unless it fi rst acquires the block in an Exclusive 

state. Figure 4.16 illustrates a possible state machine 
for the implementation.

Compared to the Modifi ed and Shared states, the 
Exclusive state is somewhere in between—a state in 
which the client has the authority to write the block, 
but the block is not yet out of sync with the backing 
store. A block in this state can be written by the cli-
ent without fi rst issuing a write-invalidate, or it can 
be forwarded to another client without the need to 
update the backing store (in which case it can no lon-
ger be marked Exclusive). In a MESI implementation, 
the fi rst step in a write operation is for a processor 
to perform a read-exclusive bus transaction. This 
informs all clients in the system of an upcoming write 
to the requested block, and it typically invalidates 
all extant copies of the block found in client caches. 
Once the block is acquired in an Exclusive state, the 
processor may freely overwrite the data at will. When 
the cache block is written, it changes to the Modi-
fi ed state, which indicates that the data is dirty—out 
of sync with the backing store and requiring a write-
back at a later time. 

The written data becomes visible to the rest of the 
system later when the block is evicted from the writ-
er’s cache, causing a write-back to the backing store. 
Alternatively, the cache-coherence mechanism could 
prompt the Exclusive owner to  propagate changes 
back to the backing store early if, in the meantime, 

Invalid

Modified

Exclusive

Shared

bus invalidate

write hit

bus

bus invalidate

bus read-miss
send cached data

bus read-miss
send cached data

write hit

write

invalidate

hit

bus read-miss
send cached datasend cached data

write miss
xmit write miss

read miss
xmit read miss
[response from
main memory]

read miss
xmit read miss
[response from
another cache]

FIGURE 4.16: State machine for a MESI protocol [based on Archibald and Baer 1986]. Boldface font indicates observed action 
(e.g., local write miss to block in question, or a bus transaction from another cache on a block address matching in the local tags). 
Regular font indicates response action taken by local cache.
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Coherence Implementations: MESIF!
Shared broken into two: Shared (1+) and Forwardable (1) 
Compare MESI (left) vs. MESIF (right):

�33 Problem: All coherence info 
goes through central point: 
the backing store
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Coherence Implementations: MOESI
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MESI vs MOESI (AMD) vs MESIF (Intel)
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each cache block in a data structure associated with 
that cache block. The data structure contains such 
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in 
a directory, which can be centralized or distributed; 
when a client makes a request for a cache block, its 
corresponding directory entry is fi rst consulted to 
determine the appropriate course of action. 

A snoop-based scheme uses no such per-block 
data structure. Instead, the appropriate course of 
action is determined by consulting every client in the 
system. On every request, each cache in the system 
is consulted and responds with information on the 
requested block; the collected information indicates 
the appropriate response. For instance, rather than 
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of 
the block actively responds to a coherence broadcast, 

indicating ownership and returning the requested 
data (if such is the appropriate response). 

Snoopy Protocols
In a snoopy protocol, all coherence-related activity 

is broadcast to all processors. All processors analyze 
all activity, and each reacts to the information pass-
ing through the system based on the contents of its 
caches. For example, if one processor is writing to a 
given data cache line, and another processor has a 
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing 
the block, the fi rst processor now has a dirty copy. If 
the second processor then makes a read request to 
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of 
a common bus for their implementation, but they 
need not use common busses if there is agreement 
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FIGURE 4.18: The many faces of backing store. The backing store in a multiprocessor system can take on many forms. In 
 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed 
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the 
bottom left.
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each cache block in a data structure associated with 
that cache block. The data structure contains such 
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in 
a directory, which can be centralized or distributed; 
when a client makes a request for a cache block, its 
corresponding directory entry is fi rst consulted to 
determine the appropriate course of action. 

A snoop-based scheme uses no such per-block 
data structure. Instead, the appropriate course of 
action is determined by consulting every client in the 
system. On every request, each cache in the system 
is consulted and responds with information on the 
requested block; the collected information indicates 
the appropriate response. For instance, rather than 
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of 
the block actively responds to a coherence broadcast, 

indicating ownership and returning the requested 
data (if such is the appropriate response). 

Snoopy Protocols
In a snoopy protocol, all coherence-related activity 

is broadcast to all processors. All processors analyze 
all activity, and each reacts to the information pass-
ing through the system based on the contents of its 
caches. For example, if one processor is writing to a 
given data cache line, and another processor has a 
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing 
the block, the fi rst processor now has a dirty copy. If 
the second processor then makes a read request to 
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of 
a common bus for their implementation, but they 
need not use common busses if there is agreement 
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 particular, a primary characteristic is whether the backing store is distributed or not. Moreover, the choices within a distributed 
organization are just as varied. The two organizations on the bottom right are different implementations of the design on the 
bottom left.
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each cache block in a data structure associated with 
that cache block. The data structure contains such 
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in 
a directory, which can be centralized or distributed; 
when a client makes a request for a cache block, its 
corresponding directory entry is fi rst consulted to 
determine the appropriate course of action. 

A snoop-based scheme uses no such per-block 
data structure. Instead, the appropriate course of 
action is determined by consulting every client in the 
system. On every request, each cache in the system 
is consulted and responds with information on the 
requested block; the collected information indicates 
the appropriate response. For instance, rather than 
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of 
the block actively responds to a coherence broadcast, 

indicating ownership and returning the requested 
data (if such is the appropriate response). 

Snoopy Protocols
In a snoopy protocol, all coherence-related activity 

is broadcast to all processors. All processors analyze 
all activity, and each reacts to the information pass-
ing through the system based on the contents of its 
caches. For example, if one processor is writing to a 
given data cache line, and another processor has a 
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing 
the block, the fi rst processor now has a dirty copy. If 
the second processor then makes a read request to 
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of 
a common bus for their implementation, but they 
need not use common busses if there is agreement 
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bottom left.
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each cache block in a data structure associated with 
that cache block. The data structure contains such 
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in 
a directory, which can be centralized or distributed; 
when a client makes a request for a cache block, its 
corresponding directory entry is fi rst consulted to 
determine the appropriate course of action. 

A snoop-based scheme uses no such per-block 
data structure. Instead, the appropriate course of 
action is determined by consulting every client in the 
system. On every request, each cache in the system 
is consulted and responds with information on the 
requested block; the collected information indicates 
the appropriate response. For instance, rather than 
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of 
the block actively responds to a coherence broadcast, 

indicating ownership and returning the requested 
data (if such is the appropriate response). 

Snoopy Protocols
In a snoopy protocol, all coherence-related activity 

is broadcast to all processors. All processors analyze 
all activity, and each reacts to the information pass-
ing through the system based on the contents of its 
caches. For example, if one processor is writing to a 
given data cache line, and another processor has a 
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing 
the block, the fi rst processor now has a dirty copy. If 
the second processor then makes a read request to 
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of 
a common bus for their implementation, but they 
need not use common busses if there is agreement 
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each cache block in a data structure associated with 
that cache block. The data structure contains such 
information as the block’s ownership, its sharing sta-
tus, etc. These data structures are all held together in 
a directory, which can be centralized or distributed; 
when a client makes a request for a cache block, its 
corresponding directory entry is fi rst consulted to 
determine the appropriate course of action. 

A snoop-based scheme uses no such per-block 
data structure. Instead, the appropriate course of 
action is determined by consulting every client in the 
system. On every request, each cache in the system 
is consulted and responds with information on the 
requested block; the collected information indicates 
the appropriate response. For instance, rather than 
looking up the owner of a block in the block’s direc-
tory entry as would be the appropriate step in a direc-
tory-based scheme, in a snoopy scheme the owner of 
the block actively responds to a coherence broadcast, 

indicating ownership and returning the requested 
data (if such is the appropriate response). 

Snoopy Protocols
In a snoopy protocol, all coherence-related activity 

is broadcast to all processors. All processors analyze 
all activity, and each reacts to the information pass-
ing through the system based on the contents of its 
caches. For example, if one processor is writing to a 
given data cache line, and another processor has a 
copy of the data cache line, then the second proces-
sor must invalidate its own cache line. After writing 
the block, the fi rst processor now has a dirty copy. If 
the second processor then makes a read request to 
that block, the fi rst processor must provide it.

Snoopy protocols seem to imply the existence of 
a common bus for their implementation, but they 
need not use common busses if there is agreement 
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system controller. Thus, the coherence point moves 
a bit farther out toward the rest of the system. Com-
pare this with Figure 4.24; the implication is that, in 
an integrated-controller system in which each node 
has its own partition of the backing store, the cost 
of performing coherence can easily outweigh the 
cost of going to the local backing store. This implica-
tion can easily drive implementations. For instance, 

a designer might want to proceed with a memory 
request speculatively before the coherence state of a 
block is known. This would require a client to back 
out of a set of operations if it is later determined that 
the data used (e.g., returned from the local DRAM 
system) was out of sync with another cached copy 
elsewhere in the system. However, such speculation 
would tend to reduce memory-request latency. Other 
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FIGURE 4.25: Coherence point in different system topologies.
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system controller. Thus, the coherence point moves 
a bit farther out toward the rest of the system. Com-
pare this with Figure 4.24; the implication is that, in 
an integrated-controller system in which each node 
has its own partition of the backing store, the cost 
of performing coherence can easily outweigh the 
cost of going to the local backing store. This implica-
tion can easily drive implementations. For instance, 

a designer might want to proceed with a memory 
request speculatively before the coherence state of a 
block is known. This would require a client to back 
out of a set of operations if it is later determined that 
the data used (e.g., returned from the local DRAM 
system) was out of sync with another cached copy 
elsewhere in the system. However, such speculation 
would tend to reduce memory-request latency. Other 
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