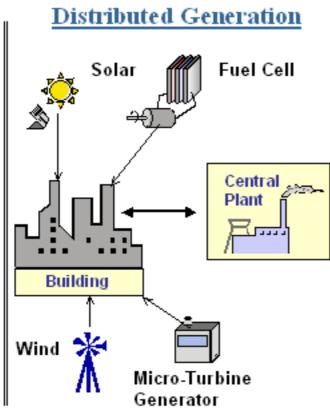
Distributed Generation & Storage to Improve Grid Resiliency

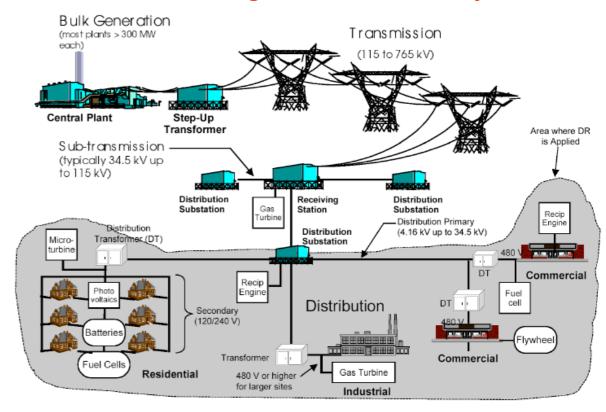
Eric D. Wachsman, Director University of Maryland Energy Research Center

www.energy.umd.edu

Distributed vs. Centralized Generation


CENTRAL vs. DISTRIBUTED GENERATION

Central Generation

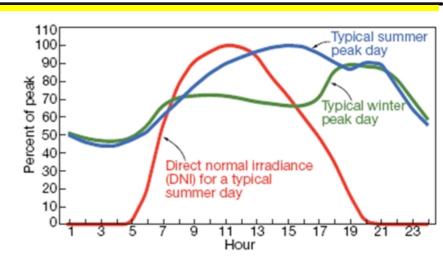

Central Plant

Central Plant

P

Distributed generation can range from an individual building to a community

- Distributed generation enables:
- greater efficiency through CHP and reduced transmission line losses
- -greater deployment of renewables
- -greater resiliency at the source

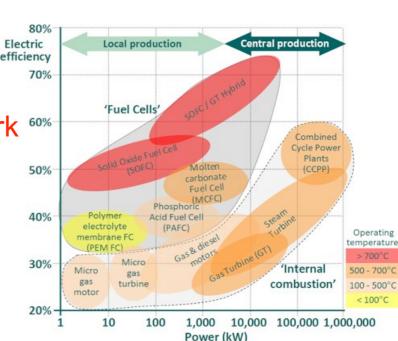

 Microgrids employing distributed generation can be integrated to improve overall grid resilience

Distributed Generation & Storage

Solar & Wind

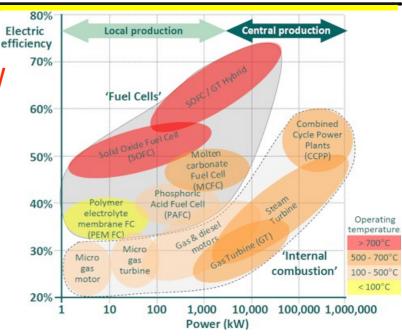
- Only works when sun shines or wind blows
 - Low capacity factor and energy produced (kWh) per rated power (kW)
- Does not provide backup/emergency power
 - Interconnect shuts system down when grid goes down

Storage


- Battery storage solves these issues but doubles system cost without generating any more power
- Can also be used to level loads and help with demand side regulation
 - This arbitrage can help offset battery cost
- Stationary storage batteries have different performance metrics than portable/automotive batteries allowing for a greater variety of chemistries
 - Cost is coming down
- Storage will play a major role in near future

Gas Turbines

- Combined Cycle Power Plants (CCPP) are benchmark
 for baseload (24/7) grid scale high efficiency power
 generation
 - They do not scale down for small DG applications
- Microturbines (≤100kW) have much lower efficiency



Distributed Generation & Storage

Fuel Cells

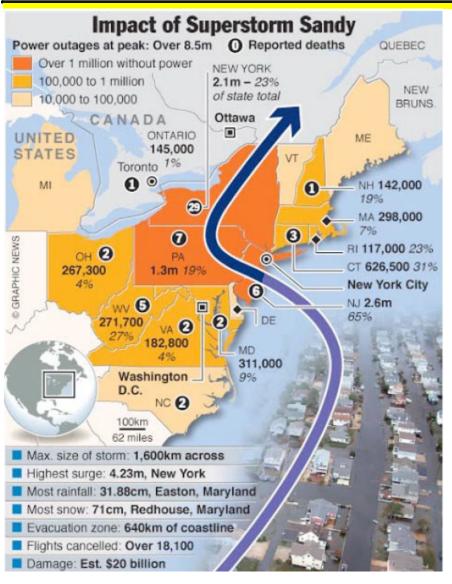
- Have the efficiency of combined cycle gas turbines <u>and</u> scale to ≤100kW
- Electrochemically convert fuel and air to electricity with high efficiency
 - -Solid Oxide Fuel Cell (SOFC) efficiency is comparable to CCPP
 - -SOFC efficiency can be ~90% for combined heat and power (CHP)
- Issue has been higher capital cost of fuel cells relative to CCPP (~\$1000/kW)

Fuel Cell Energy

2.8 MW MCFC <50% efficiency ~\$2500/kW

Bloom Energy

200 kW SOFC ~55% efficiency ~\$8000/kW


Redox Power Systems

25 kW SOFC
~55% efficiency
Planned to be competitive with CCPP

Fuel Cells for Resilient Generation

- Impact of major storms on grid can last days to weeks
- Accompanied by storm surge
- Fuel cells are quiet, vibration free, with negligible emissions :
 - -can be sited on roof or inside building
 - -operate on continuous pipeline gas
- Generators are noisy, vibrating, with harmful emission issues:
 - -sited in basement or ground floor subject to flooding
 - -subject to fuel supply disruption

- During Superstorm Sandy 80 regional fuel cell systems provided backup power for communications and critical infrastructure with 100% reliability and no failures
- While numerous diesel, propane generators and battery backups had problems.

Fuel Cells for Resilient Generation

Comparison of features/costs for residential and distributed generation systems

	Residential 5 kW System			1.5MW DG
	Photovoltaic	Generator	Fuel Cell	Fuel Cell
Fuel consumption	0	High	Low	Low
CO ₂ emissions	0	High	Low	Low
CO/NO _x emissions	0	High	Negligible	Negligible
Noise	None	Loud	Quiet	Quiet
Maintenance	Negligible	High	Negligible	Negligible
Lifetime for 24hr/day operation	\sim 20yrs	$<1 \mathrm{yr}^1$	>10yrs	~20yrs
Installed system cost ²	\$20K	~\$10K	~\$50K	~\$3.6M
Peak power availability/day	<2hr	24hr	24hr	24hr
Annual power production	\sim 5,200kWh ³	43,800kWh	43,800kWh	13,140MWh
Capital cost over lifetime	\sim \$0.19/kWh	>\$0.23/kWh	<\$0.11/kWh	\sim \$0.01/kWh
Fuel cost at retail NG cost ⁴	0	\sim \$0.09/kWh	\sim \$0.04/kWh	\sim \$0.04/kWh
Levelized cost of electricity ⁵	~\$0.19/kWh	>\$0.32/kWh	<\$0.15/kWh	~\$0.05/kWh

¹Typical air- and water-cooled gensets run for ~500 hrs and ~8000 hrs, respectively, between rebuilds. They are not designed to run continuously and are for emergency backup power only.

⁵LCOE does not include financing charges.

²With no rebates or tax credits.

³Based on annual average solar insolation for Baltimore.

⁴Current retail natural gas cost is \$0.55/therm. Assumes fuel cell and genset efficiencies of 50% and 20%, respectively. Does not take into consideration higher efficiency fuel cell CHP systems.