Useful identities: \[\cos(x) = (e^{ix} + e^{-ix})/2 \]
\[\sin(x) = (e^{ix} - e^{-ix})/2i \]
\[f(|s|) = u(s)f(s) + u(-s)f(-s) \]

Also, feel free to use properties of convolution (e.g. associativity) whenever it helps.

1) Compute and simplify:
 a) \(e^{j\omega t} * (e^{-bt} u(t)) \), \(b > 0 \)
 b) \((e^{-at} u(t)) * (e^{-bt} u(t)) \), \(a,b > 0, a \neq b \)
 c) \(e^{j\omega t} *((e^{-at} u(t)) * (e^{-bt} u(t))) \), \(a,b > 0, a \neq b \)
 d) \((e^{j\omega t} * (e^{-at} u(t))) * (e^{-bt} u(t)) \), \(a,b > 0, a \neq b \)
 e) \(((e^{-bt} u(t)) * e^{j\omega t}) * (e^{-at} u(t)) \), \(a,b > 0, a \neq b \)

2) Compute and simplify:
 a) \(e^{-a|t|} \sin(\omega s), a > 0 \)
 b) \(e^{-a|t|} \cos(\omega s), a > 0 \)
 c) \(e^{-a|t|} \cos(\omega s) * e^{-b|t|}, a,b > 0 \)

3) Consider the continuous LTI system with \(y(s) = x(s - s_0) / 2 \):
 a) Compute \(h(s) \)
 b) Compute its inverse impulse response \(h_I(s) \)
 c) Demonstrate that \(h_I(s) * h(s) = \delta(s) \)

4) Consider the continuous LTI system with \(y(t) = -\int_{-\infty}^{t} x(t') dt' \):
 a) Compute \(h(t) \)
 b) Compute its inverse impulse response \(h_I(t) \)
 c) Demonstrate that \(h_I(t) * h(t) = \delta(t) \)

5) Consider the continuous LTI system with \(y[n] = \beta \text{Diff}\{x[n]\} = \beta x[n] - \beta x[n-1], \beta \neq 0 \):
 a) Compute \(h[n] \)
 b) Compute its inverse impulse response \(h_I[n] \)
c) Demonstrate that $h_i[n] * h[n] = \delta[n]

6) Consider the continuous LTI system with

\[y[n] = \text{Diff}\{\text{Diff}\{x[n]\}\} = \text{Diff}\{x[n] - x[n-1]\} = x[n] - 2x[n-1] + x[n-2] \]

a) Compute $h[n]$

b) Prove that its inverse impulse response is given by $h_i[n] = (n + 1)u[n]$ by showing that $h_i[n] * h[n] = \delta[n]$ (you may want to use $(n + 1)u[n] = u[n] * u[n]$)

7) Prove that each of the following are either stable or unstable systems:

a) \[y(t) = -x(t - t_0) = \int_{-\infty}^{\infty} x(t')\left(-\delta((t - t') - t_0)\right)dt' \]

b) \[y(t) = \int_{-\infty}^{\infty} x(t')e^{-b(t-t')}u(t - t')dt', b > 0 \]

c) \[y(t) = \int_{-\infty}^{\infty} x(t')e^{-b(t-t')} dt', b > 0 \]

d) \[y(s) = \int_{-\infty}^{\infty} x(s')e^{-b(s-s')}ds', b > 0 \]

e) \[y[n] = \sum_{k=-\infty}^{\infty} x[k]\alpha^{-(n-k)}, |\alpha| < 1 \]

f) \[y[n] = \sum_{k=-\infty}^{\infty} x[k]\alpha^{-(n-k)}, |\alpha| < 1 \]

8) Consider the causal system defined by a circuit with input and output satisfying the differential equation \[\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = x(t) \].

a) Find $y(t)$ for $x(t) = \delta(t)$ (i.e. the impulse response).

b) Find $y(t)$ for $x(t) = u(t)$

Note: The homogeneous solution, i.e., the most general solution to this differential equation when $x(t) = 0$, is given by $y_h(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ where c_1 and c_2 are unknown constants and λ_1 and λ_2 are the two distinct solutions to the system’s characteristic equation $\lambda^2 + 3\lambda + 2 = 0$. This is important since it will also be the solution to part (a) for positive t.

9) For each causal system find the impulse response $h[n]$:

a) \[y[n] = (x[n] + x[n-1] + x[n-2]) / 3 \]

b) \[y[n] = c\alpha x[n] + \beta y[n-1], |\beta| < 1 \]

c) \[y[n] = x[n] + \beta y[n-2], |\beta| < 1 \]

d) \[y[n] = x[n] + x[n-1] + \beta y[n-2], |\beta| < 1 \]