Useful identities:
\[
\cos(x) = (e^{jx} + e^{-jx})/2 \\
\sin(x) = (e^{jx} - e^{-jx})/2j \\
f(|s|) = u(s)f(s) + u(-s)f(-s)
\]

1) Consider the discrete Linear Time Invariant (LTI) system with Impulse Response \(h[n] = u[n] \):
 a) For \(x[n] = u[n] \), compute \(y[n] \)
 b) For \(x[n] = u[n]\alpha^n, |\alpha| < 1 \), compute \(y[n] \)

2) Consider the following continuous LTI systems with different Impulse Responses, when given a common input signal \(x(t) = u(t) \):
 a) For \(h(t) = u(t) \), compute \(y(t) \) and simplify.
 b) For \(h(t) = u(t)e^{-bt}, b > 0 \), compute \(y(t) \) and simplify.
 c) For \(h(t) = u(t)e^{j\omega t} \), compute \(y(t) \) and simplify.
 d) For \(h(t) = u(t)\cos(\omega t) \), compute \(y(t) \) and simplify.

3) Consider the continuous LTI system with Impulse Response \(h(t) = u(t)e^{-at}, a > 0 \):
 a) For \(x(t) = u(t) \), compute \(y(t) \) and simplify.
 b) For \(x(t) = u(t)e^{-at} \), compute \(y(t) \) and simplify.
 c) For \(x(t) = u(t)e^{j\omega t} \), compute \(y(t) \) and simplify.

4) Consider the continuous LTI system with Impulse Response \(h(t) = u(t)e^{-at}e^{j\omega t}, a > 0 \):
 a) For \(x(t) = u(t) \), compute \(y(t) \) and simplify.
 b) For \(x(t) = u(t)e^{-bt}, b > 0, b \neq a \), compute \(y(t) \) and simplify.

5) Consider the continuous LTI system with Impulse Response \(h(t) = u(t)e^{-at}\cos(\omega_0 t), a > 0 \):
 a) For \(x(t) = u(t) \), compute \(y(t) \) and simplify.
 b) For \(x(t) = u(t)e^{-bt}, b > 0, b \neq a \), compute \(y(t) \) and simplify.

6) Consider the continuous LTI system with Impulse Response \(h(s) = \delta(s - s_0) \):
 a) For \(x(s) = \cos(\omega s) \), compute \(y(s) \) and simplify.
b) Describe in a few words the effect of this system

7) Consider the continuous LTI system with Impulse Response \(h(s) = e^{-a|s|} \), \(a > 0 \):
 a) For \(x(s) = e^{j\omega s} \), compute \(y(s) \) and simplify.
 b) For \(x(s) = \cos(\omega s) \), compute \(y(s) \) and simplify.

8) Compute and simplify:
 a) \(\int_{-\infty}^{\infty} \cos(\omega t)\delta(t - t_0)dt \)
 b) \(\int_{-\infty}^{\infty} \cos(\omega t)\delta'(t - t_0)dt \)
 c) \(\int_{-\infty}^{\infty} \cos(\omega t)\delta''(t - t_0)dt \)

9) Compute and simplify:
 a) \(\cos(\omega t) * \delta(t) \)
 b) \(\cos(\omega t) * \delta(t - t_0) \)
 c) \(\cos(\omega t) * \delta'(t) \)