Instructor:
Dr. Panos Dimitrakopoulos
Office: Room 1227B, Chemical & Nuclear Engineering Bldg
Phone: (301) 405-8166, Email: dimitrak at eng.umd.edu
Office hours: Mondays 1:30-3:00 pm
Course web: Blackboard Learning System (https://bb.eng.umd.edu)
Class: Mondays and Wednesdays: 4:00-5:15pm (CHE 2110)

Teaching Assistant:
Walter R. Dodson
Office: Room 2210, Chemical & Nuclear Engineering Bldg
Phone: (301) 405-7499, Email: wdodson at umd.edu
Office hours: Tuesdays and Thursdays: 3:00-4:00 pm

Course Description:
Momentum, heat and mass transfer theory is taught at both the macroscopic and microscopic levels utilizing integral and differential conservation equations; similarities between the three types of transport; dimensionless analysis and time scales; Finite Fourier Transform and similarity methodologies; and numerical analysis. The course includes steady- and unsteady-state creeping and laminar flows; viscous and inviscid flows; transport at interfaces; lubrication theory; boundary layer theory; forced and natural convection; with specific application to complex and biological chemical engineering processes.

The course is divided into 3 parts: (a) similarities between the three types of transport and relevant mathematical methodologies (Appendix from Deen, Chapters 1-5), (b) fluid mechanics (Chapters 5-8), and (c) heat and mass transfer (Chapters 9-12). In addition, the course gives emphasis on small-scale biological systems such as flow in circulation and tissues (Chapter 5 from Truskey et al.), transport in porous media (Chapter 8), transvascular transport (Chapter 9), and cell adhesion (Chapters 11, 12).

Recommended Textbooks:

On reserve in the Engineering Library. Note that the library has also an array of books with similar titles; all of them may be used for further study.

Grading Policy:
Homework and Class Participation 10 % (Teams of two members)
Mid-term exam 40 %
Final exam 50 %
Examinations:
All exams are “closed-books”/“closed-notes” (notes on 3 sheets of paper allowed).
The “mid-term” exam will be one class period in length.
Date for “mid-term” exam (subject to change): Wednesday April 4, 2007.
Final Exam: the date is set by the University (Tuesday, May 15 2007, at 1:30pm).

Homework Assignments:
Homework problems will be assigned on a regular basis.
The homework must be submitted at the beginning of the class the date it is due.
The problems and the solutions will be posted on the course web page.

Prerequisites:
The material taught in this class is based on the graduate-level Chemical Engineering Transport Phenomena.
Thus the students who may want to take this class should have experience with:
(a) Undergraduate Transport Phenomena (at least for one semester);
(b) Applied Mathematics for Engineers (including Vector Calculus and Ordinary Differential Equations)
from relevant undergraduate or graduate courses.

Academic Honesty:
Plagiarism and academic dishonesty will not be tolerated, and suspected incidence will be referred to the
Student Honor Council of the Judiciary Programs. For more information see:

The following information is suggested by the Student Honor Council:

The University of Maryland, College Park has a nationally recognized Code of Academic Integrity, admin-
istered by the Student Honor Council. This Code sets standards for academic integrity at Maryland for
all undergraduate and graduate students. As a student you are responsible for upholding these standards
for this course. It is very important for you to be aware of the consequences of cheating, fabrication, fa-
cilitation, and plagiarism. For more information on the Code of Academic Integrity or the Student Honor
Council, please visit http://www.shc.umd.edu