

University of Maryland

ESC Summer '99

Cache Architectures for Real-Time Embedded Systems

Prof. Bruce Jacob

Electrical & Computer Engineering University of Maryland, College Park

OUTLINE:

- Cache Primer
- Memory Management Primer
- Caches & Embedded Systems
- Cache Architectures for Real-Time

University of Maryland

ESC Summer '99

Cache Organizations

Fundamental Unit: CACHE BLOCK

Purpose: HOLD DATA

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

A Simple Cache

CACHES FOR **REAL-TIME Cache Organizations EMBEDDED SYSTEMS Cache Addressing Mechanism Bruce Jacob** University of **ADDRESS** Maryland ESC Summer '99 DATA

CACHES FOR **REAL-TIME Cache Organizations EMBEDDED SYSTEMS Cache Addressing Mechanism Bruce Jacob** University of **ADDRESS** Maryland ESC Summer '99 DATA **DATA OUT**

Cache Organizations

Cache Addressing Mechanism

Bruce Jacob

University of Maryland

ESC Summer '99

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

A Simple Cache

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

A More Complex Cache (similar to having several caches)

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

A Single CACHE BLOCK (or LINE) Parameter: BLOCK SIZE (or LINE SIZE)

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

A Single CACHE SET (equivalence class) Parameter: ASSOCIATIVITY

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

A Single CACHE COLUMN (or WAY)

Cache Organizations

Associative Lookup

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

Associative Lookup

CACHES FOR REAL-TIME EMBEDDED SYSTEMS

Bruce Jacob

University of Maryland

ESC Summer '99

CACHES FOR
REAL-TIME
EMBEDDED
SYSTEMS

University of Maryland

ESC Summer '99

Cache Organizations

Given 8 cache blocks ...

Mapped Set Associative

4-Way e Set Associative

8-Way Set Associative

(Fully Associative, or Content-Addressable Memory)

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Organizations

Associativity vs. the Memory Space

University of Maryland

ESC Summer '99

Memory Management

TRADITIONALLY:

The MANAGEMENT of one's USE of PHYSICAL MEMORY

THIS TALK'S CONTEXT:

a DIFFERENT NAMESPACE used for ADDRESSING CACHES

i.e. VIRTUAL ADDRESSING

Bruce Jacob

University of Maryland

ESC Summer '99

Cache Addressing

Physically Indexed, Physically Tagged

University of Maryland

ESC Summer '99

Cache Addressing

Physically Indexed, Virtually Tagged

University of Maryland

ESC Summer '99

Cache Addressing

Virtually Indexed, Physically Tagged

University of Maryland

ESC Summer '99

Cache Addressing

Virtually Indexed, Virtually Tagged

A Little More Detail

CACHES FOR REAL-TIME EMBEDDED SYSTEMS

Bruce Jacob

University of Maryland

ESC Summer '99

University of Maryland

ESC Summer '99

Memory Management

TRADITIONALLY:

The MANAGEMENT of one's USE of PHYSICAL MEMORY

NEW DEFINITION:

The MANAGEMENT of ALL STRUCTURES associated with MEMORY

WHAT WE WILL SEE:

VIRTUAL ADDRESSING can help SIMPLIFY memory management

Cache vs. Scratch-pad RAM

EMBEDDED SYSTEMS

CACHES FOR REAL-TIME

Bruce Jacob

University of Maryland

ESC Summer '99

Why Traditional Caches Suck

Bruce Jacob

CACHES FOR REAL-TIME

> EMBEDDED SYSTEMS

University of Maryland

ESC Summer '99

CACHES FOR REAL-TIME EMBEDDED SYSTEMS	Example #1
Bruce Jacob	
University of Maryland	
ESC Summer '99	
	Time►
	HIT or MISS?
	Set 3:
	Set 2:
	Set 1:
	Set 0:

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

University of Maryland

ESC Summer '99

Example #1

Bruce Jacob

University of Maryland

ESC Summer '99

Example #1

Bruce Jacob

University of Maryland

ESC Summer '99

Example #1

Bruce Jacob

University of Maryland

ESC Summer '99

Example #1

CACHES FOR REAL-TIME EMBEDDED SYSTEMS	Example #2
Bruce Jacob University of Maryland ESC Summer '99	ABABC Refs: 0133 456456 Time
	Set 3:
	Set 2:
	Set 1:
	Set 0:

University of Maryland

ESC Summer '99

Example #2

University of Maryland

ESC Summer '99

Example #2

University of Maryland

ESC Summer '99

Example #2

University of Maryland

ESC Summer '99

Example #2

University of Maryland

ESC Summer '99

Example #2

University of Maryland

University of Maryland

University of Maryland

University of Maryland

ESC Summer '99

Example #2

University of Maryland

University of Maryland

University of Maryland

University of Maryland

CACHES FOR
REAL-TIME
EMBEDDED
SYSTEMS

University of Maryland

University of Maryland

ESC Summer '99

Example #3

University of Maryland

ESC Summer '99

Example #3

University of Maryland

ESC Summer '99

Example #3

University of Maryland

ESC Summer '99

Example #3

ABABC Refs: 0133 01 3 34

University of Maryland

CACHES FOR
REAL-TIME
EMBEDDED
SYSTEMS

University of Maryland

University of Maryland

Bruce Jacob

University of Maryland

University of Maryland

ESC Summer '99

Traditional Caches

Require TAGS

Soon into program execution, contents of cache are indeterminate (thus the term "hit rate" for performance)

Set associativity delays problems, but only to a point

Associativity > 2 does not implement TRUE Least-Recently-Used
CACHES FOR **REAL-TIME** Scratch-pad RAMs (again) **EMBEDDED SYSTEMS Bruce Jacob** UNIFORM NON-UNIFORM **ADDRESS ADDRESS** University of SPACE SPACE Maryland ESC Summer '99 SRAM0 **I-CACHE** SRAM1 DRAM **D-CACHE IBUF Traditional Caches** Scratch-Pad RAMs **Require EXPLICIT MANAGEMENT**

University of Maryland

ESC Summer '99

Scratch-Pad RAMs

No TAGS (save die area)

As long as everything fits, GREAT!

Otherwise, addressing is impediment:

CONTIGUITY must be preserved

DISTANCE BETWEEN OBJECTS

must be preserved

DSPs go one step further:

Multiply-accumulate requires TWO DISJOINT DATA SPACES

University of Maryland

ESC Summer '99

Scratch-Pad RAMs

Access to memory is NON-ORTHOGONAL Separate spaces are DISJOINT

Bottom Line: COMPILATION IS HARD

Trend: UNIFORM ADDRESS SPACES

(i.e. more like traditional caches)

PAGE 76

University of Maryland

ESC Summer '99

WHY IT'S DIFFICULT

DATA NAME => DATA PLACEMENT Must Group Data & Instructions So as to Minimize Cache Conflicts

University of Maryland

ESC Summer '99

Data Placement

DATA SPACE

- Relatively easy to rearrange items ...
- Unless part of a LARGER ITEM (cannot rearrange array elements)

CODE SPACE

- Can move FUNCTIONS around easily
- PORTIONS of code is another matter ...

THERE IS A FAMILIAR SOLUTION ...

University of Maryland

ESC Summer '99

Solution #1

A BIG, HIGHLY ASSOCIATIVE CACHE + ability to PIN DOWN CACHE LINES

University of Maryland

ESC Summer '99

Solution #1

- Choose items to cache, Bring each into the cache, Pin each down
- Can CACHE/NOT-CACHE adjacent items
- Must know CACHE ORGANIZATION at COMPILE TIME (not huge issue for embedded systems)
- SIMPLEST, but perhaps
 MOST EXPENSIVE solution

CACHES FOR REAL-TIME EMBEDDED SYSTEMS	Solution #2 (var. on #1)		
Bruce Jacob			
University of Maryland	Software-Managed Caches		ΜΑΧ
ESC Summer '99	Top bits determine		
	memory-access behavior	NOT	
	(CACHED/NON-CACHED)		CACHED
	Other possibilities:		
	 Physical/virtual 		
	 Faulting/non-faulting 		CACHED
	 Which cache or 		
	memory structure		
	Enables on-the-fly decision-making		
	ite. memory benavior		

University of Maryland

ESC Summer '99

Application Behavior

int *array = malloc (N * sizeof int); // YES
int *stream = malloc (N * sizeof int); // NO
int *mix = malloc (N * sizeof int); // MAYBE

for (i=0; i<N; i++)
x = array[i]; // CACHED REFERENCE</pre>

stream |= MIN_NEG_INT; // 0x8000000
for (i=0; i<N; i++)
 x = stream[i]; // NON-CACHED</pre>

for (i=0; i<N; i++) // DEPENDS ON cache_it x = (cache_it (i)) ? mix[i] : (mix | MIN_NEG_INT)[i];

University of Maryland

ESC Summer '99

Solution #2

Advantages over Solution #1:

Allows DYNAMIC CACHE DECISIONS LESS TIED to CACHE ORGANIZATION

Many of the same weaknesses:

Requires **BIG CACHE** Requires **SET ASSOCIATIVE CACHE** Have to deal with **DATA PLACEMENT**...

Issue: Data Placement

DATA NAME => DATA PLACEMENT

CACHES FOR REAL-TIME EMBEDDED SYSTEMS

Bruce Jacob

University of Maryland

ESC Summer '99

University of Maryland

ESC Summer '99

Issue: Data Placement

GOALS:

- Disassociate NAME and PLACEMENT
- Fine-grained code/data relocation at granularity of TLB page or (better) cache line

University of Maryland

ESC Summer '99

Enter Virtual Memory

Disassociates NAME from PLACE

Allows you to go from THIS:

University of Maryland

ESC Summer '99

Enter Virtual Memory

Disassociates NAME from PLACE

... to THIS:

University of Maryland

ESC Summer '99

Real-Time TLB Organization

Works with either CACHE or SCRATCH-PAD

University of Maryland

ESC Summer '99

Solution #3

Fully-Associative Real-Time TLB + Direct-Mapped SRAM

- TLB must fully map SRAM (8KB SRAM, 256-byte page => 32 entries)
- Can place ANY 256-byte page ANYWHERE in the SRAM
- Benefit: simple SRAM design
- Drawback: fully assoc. TLB

University of Maryland

ESC Summer '99

Variations on Solution #3

WANT A LARGER CACHE?

- Larger TLB
- Larger Page Size

WANT A SMALLER TLB?

- Smaller Cache
- Larger Page Size

WANT LESS ASSOCIATIVITY?

• That's a little more involved ...

Set-Associative RT-TLBs

Bruce Jacob

CACHES FOR REAL-TIME

> EMBEDDED SYSTEMS

University of Maryland

ESC Summer '99

Associativity vs. the Memory Space

University of Maryland

ESC Summer '99

Set-Associative RT-TLBs

LIMITING CASE:

Direct-Mapped TLB Direct-Mapped SRAM Same set of data placement problems we had with NO TLB ... **EXCEPT:** contiguity restriction lifted Bottom Line: PROBABLY NOT WORTH IT **INTERMEDIATE SOLUTIONS: Obvious Trade-Offs Exist NEED MORE INVESTIGATION**

University of Maryland

ESC Summer '99

Solution #4

What if SRAM Still Too Small?

(i.e. — previous solution reduces CONFLICT problems, not CAPACITY problems)

Real-Time SRAM-Management

University of Maryland

ESC Summer '99

Real-Time SRAM Management

CLASSIFY ALL CODE & DATA:

- MUST ALWAYS REMAIN CACHED
- MUST NEVER BE CACHED
- EXHIBITS PERIODIC LOCALITY (i.e. loop code & data)

FOR PERIODIC ITEMS:

- Add code at beginning to set up TLB
- Add code at end to unmap TLB and write out any dirty values

University of Maryland

ESC Summer '99

Real-Time SRAM Management

RESULTS:

- VM-style extending of SRAM space into DRAM space via demand-paging
- PROACTIVE demand-paging, not REACTIVE demand-paging
- Deterministic memory performance for all references
- Slight overhead in code size & execution

University of Maryland

ESC Summer '99

Summary

UNIFORM MEMORY SPACES:

- Provide Orthogonal Look at Memory
- Cache Architectures Exhibit
 Non-Deterministic Performance

NON-UNIFORM MEMORY SPACES:

- Non-Orthogonal Memory Map
- Caches Offer Deterministic Performance (at the Price of Explicit Management)

TREND IS TOWARD UNIFORM SPACES

Easier to Program & Compile for ...

University of Maryland

ESC Summer '99

Summary, cont'd

REAL-TIME CACHE ARCHITECTURES:

- Really Big, Highly Associative Caches
- Software-Managed Caches
- Virtual Addressing w/ RT-TLB
- Real-Time SRAM Management

VIRTUAL MEMORY:

- Nice Programming Paradigm
- Separates NAMING from LOCATION
- Like Tang[®], Not Just for Breakfast ...

slides at http://www.ece.umd.edu/~blj/talks/