

1

ABSTRACT

This paper presents the modeling of embedded systems with SimBed,
an execution-driven simulation testbed that measures the execution
behavior and power consumption of embedded applications and
RTOSs by executing them on an accurate architectural model of a
microcontroller with simulated real-time stimuli. We briefly describe
the simulation environment and present a study that compares three
RTOSs:

µ

C/OS-II,

a popular public-domain embedded real-time
operating system;

Echidna,

a sophisticated, industrial-strength
(commercial) RTOS; and

NOS,

 a bare-bones multi-rate task sched-
uler reminiscent of typical “roll-your-own” RTOSs found in many
commercial embedded systems. The microcontroller simulated in
this study is the Motorola M-CORE processor: a low-power, 32-bit
CPU core with 16-bit instructions, running at 20MHz. Our simula-
tions show what happens when RTOSs are pushed beyond their lim-
its, and they depict situations in which unexpected interrupts or
unaccounted-for task invocations disrupt timing, even when the
CPU is lightly loaded. In general, there appears no clear winner in
timing accuracy between preemptive systems and cooperative sys-
tems. The power-consumption measurements show that RTOS over-
head is a factor of two to four higher than it needs to be, compared
to the energy consumption of the minimal scheduler. In addition,
poorly designed idle loops can cause the system to double its energy
consumption—energy that could be saved by a simple hardware
sleep mechanism.

1 INTRODUCTION

This paper motivates the use of simulated embedded microcontrol-
lers for system design and presents a simulation-based experimental
study comparing the performance and energy characteristics of three
real-time operating systems (RTOSs)—(1) the public-domain em-
bedded kernel

µ

C/OS-II [16], (2) the commercial real-time kernel
Echidna [5], and (3) a “roll-your-own” style system that has an orga-
nization common in today’s embedded systems [7, 8].

1.1 Motivation

With embedded systems moving toward faster and smaller proces-
sors and systems on a chip, it becomes increasingly difficult to accu-
rately quantify embedded-system behavior. Probing a piece of
silicon, or accurately measuring timing values down to a nanosec-

ond or less becomes more expensive and more difficult—in some
cases impossible. Only a handful of years ago it was easy enough to
hook a probe to the memory and I/O buses, but, with the advent of
systems on a chip and application-specific integrated circuits, it is no
longer possible to obtain those signals, for they never leave the sili-
con [17, 23]. The only way to debug these systems is to either probe
the silicon itself (a bit unrealistic), or to add logic to the chip to bring
the desired signal off the chip; the latter option is limited by the
number of physical pins that can be put on a chip and spared for sim-
ple debug and evaluation purposes. Also, with the speeds that some
of today’s embedded processors are running, it becomes difficult to
find a logic analyzer that can keep up with the processors and not
cost something beyond the reach of most academic research groups
and small embedded-systems design houses. If there were another
method to evaluate these systems early on, both time and money
could be saved.

There are three recent trends that are relevant to this observation.
First is a design methodology that is gaining wide acceptance in
both the embedded and general-purpose worlds—hardware/software
cosimulation or codesign [13]. One of the fundamental aspects of
this methodology is that, early on in the process, software is devel-
oped for and executed on models of the hardware that are imple-
mented in some high-level language. As opposed to the traditional
method of developing the hardware and software for a system sepa-
rately, the hardware/software codesign methodology recognizes the
benefits inherent in the designing of the two together, at the same
time. Doing so provides benefits in performance, reliability, and
time to market, due to the observation that when hardware and soft-
ware designers communicate during the design process, there is less
chance of problems arising due to ignorance [21].

Another trend gaining in popularity is the use of real-time operat-
ing systems; RTOSs are increasingly used in the development and
deployment of real-time embedded systems. Their benefits are well
known: they provide numerous helpful facilities including coopera-
tive and preemptive multitasking, multi-threading, support for both
periodic and aperiodic tasks, fixed-priority/dynamic-priority sched-
uling, semaphores, inter-process communication, shared memory,
and memory management; in doing so they can dramatically reduce
the programming burden of the system designer [9, 2, 10].

The third trend is the increasing importance of low-energy sys-
tems. There is rapidly growing consumer demand for computing
devices that are battery operated, including PDAs, cell phones,
wearable computers, handhelds, and laptops. Like many things, it is

The Performance and Energy Consumption
of Embedded Real-Time Operating Systems

Kathleen Baynes, Chris Collins, Eric Fiterman, Christine Smit, Tiebing Zhang, and Bruce Jacob

Dept. of Electrical & Computer Engineering
University of Maryland at College Park

{ktbaynes,chriscol,ericf,csmit,zhangtb,blj}@eng.umd.edu

Technical Report UMD-SCA-TR-2000-04
November, 2000

2

difficult to retro-fit a low-energy philosophy into an existing system
architecture; as the StrongARM has shown, energy consumption
must be considered from the beginning of the design phase if the
system is to be both high-performance and low-power.

These three trends meet at a simple, clear conclusion: It is prudent
to have a simulation-based experimental environment for real-time
embedded systems, but, if the model is to be truly useful for devel-
oping modern embedded systems, it must be accurate enough to run
unmodified real-time operating systems, and it must accurately char-
acterize the energy consumption of the system. High-level language
modeling of applications and their operating systems has been per-
formed by the SimOS group [22], and there has been a large number
of recent studies modeling the power consumption of microproces-
sors and applications [14, 11, 12, 6, 3, 29, 26], but this is the first
study of which we are aware that performs both.

1.2 SimBed

Our group has developed

SimBed

, a C-language model of an embed-
ded hardware system that is accurate enough to run unmodified real-
time operating systems (i.e., the binary that runs on the simulator is
the same binary that runs on real hardware). The processor model is
the Motorola M-CORE microcontroller: a low-power, 32-bit CPU
core with 16-bit instructions [27, 28]. All devices, interrupts, and
interrupt handlers used by the operating systems and applications are
accurately simulated. The model has been verified as cycle-accurate
to within 100 cycles per million compared to actual hardware (two
of Motorola’s M-CORE evaluation boards: one for the generic ISA,
another for the MMC2001). The numbers presented in this paper
correspond to the first evaluation board, which clocks the processor
at 20MHz.

We have also instrumented the processor simulator to measure
energy consumption, using existing instruction-based techniques
[26]. We have verified the simulator’s output to measurements of a
Motorola M-CORE processor, and our results are within 10–15% of
actual numbers. This level of accuracy for modeling power at the
processor level is about where most current research stands (e.g. [3,
26]).

This paper presents an experimental study using

SimBed

 in which
the real-time performance and energy consumption of three different
RTOSs are compared: a public-domain preemptive multitasking ker-
nel, an industrial-strength cooperative multi-tasking kernel, and a
bare-bones task scheduler (which represents the limiting case of a
lightweight cooperatively-scheduled RTOS). We also present the
theoretical maximum throughput of the application code

sans

RTOS.
An interesting side note is that some of the measurements repre-

sent things that cannot be obtained via traditional means (e.g., logic
analyzers) on current M-CORE chips without perturbing the
observed system, as M-CORE offerings all use on-chip memories.
For example, the division of time and energy into kernel, user, idle,
and interrupt-handler components could be obtained by either
instrumenting code or using off-chip memory and a logic analyzer,
but both schemes would change the system’s execution time and
energy consumption.

1.3 Experiments

This study looks at the behavior of embedded real-time systems,
particularly those that use embedded RTOSs. Our initial focus is on
systems that use

on-line

 scheduling (the choices are made at run-
time as opposed to compile-time), as they tend to be less amenable
to analytical verification than systems with

off-line

 scheduling (those
in which the scheduling decisions are made at compile-time). All
RTOSs studied handle the simultaneous execution of multiple appli-

cations. The RTOSs are also compared to the theoretical maximum
throughput values calculated for the benchmark applications.
Briefly, these are the execution models studied in this paper:

uC/OS-II:

µ

C/OS-II is a preemptive multitasking RTOS that is
in the public domain [16]. It is ROMable and scalable (only
modules that are needed are compiled into the executable).
Execution times of all kernel functions and services are
deterministic. Despite its small size (1700 lines of code), it
offers such services as mailboxes, queues, semaphores, time-
related functions, etc. It is chosen to represent sophisticated
preemptive multi-tasking RTOSs with footprints small enough
for microcontroller systems.

ECHIDNA:

A cooperative multitasking RTOS based on
Chimera [24] that swaps Chimera’s POSIX-like threads in the
microkernel for port-based objects [25]; it supports
reconfigurable component-based software for microcontrollers
and digital signal processors [5]. This is chosen to be
representative of sophisticated dynamic-priority cooperative
RTOSs with footprints small enough for microcontroller
systems (Echidna has a footprint of ~6KB).

NOS:

A bare-bones, fixed-priority, multi-rate executive based on
descriptions of “roll-your-own” RTOSs given by embedded-
systems designers in industry [8]. Though it is just a task
scheduler and not a full OS, we refer to it in this paper as an
“RTOS” for convenience. It is chosen to represent the
attainable energy and performance limit of non-preemptive
RTOSs.

LIMIT:

The theoretical performance limit of each application,
based solely on the computational requirements of its
implementation. This represents the (unattainable) energy and
performance limit of a zero-overhead RTOS.

For the realistic performance limit (NOS), we chose a multi-rate
executive rather than something simpler, such as a cyclic scheduler,
because the behavior of a cyclic scheduler is very sensitive to the
execution profile of the application program, while the multi-rate
executive is much less so [15].

Within each of these execution models, we execute several differ-
ent application kernels. These are periodic applications, for which an
absolute deadline is less important than a relative deadline—i.e.
these are applications for which a 500Hz task requires its i+1

th

 invo-
cation to run exactly 2ms after its i

th

 invocation and could care less
whether the very first invocation started at time t

0

 or t

0

 plus some
small delta. These have slightly different goals than traditional real-
time applications; for instance if the RTOS schedules a 500Hz task
to run every 2ms, but the task is executed exactly 1ms “late” on
every invocation, then—as far as the outside world is concerned—it
is a 500MHz task that is on-time for every invocation. Thus, the
measure of an RTOS’s effectiveness in executing these applications
can be determined by external observation; one does not need to
know the contents of the scheduler’s data structures to determine
whether a periodic application is invoked on-time or not.

Following Liu’s terminology [18], we use the term “job” to mean

an independently scheduled block of code

 and the term “task” to
mean

a collection of logically related jobs

 that together perform
some function. The embedded applications studied exploit multi-
tasking to the extent possible in the given OS (

µ

C/OS provides pre-
emptive multitasking, Echidna provides cooperative multitasking,
and NOS schedules work on function boundaries) and use for all
data transfer whatever inter-process communication mechanism is
supplied by the RTOS. Within a task, we stress the RTOS’s commu-
nication mechanism by having different independently scheduled
jobs read the input and write the output; i.e., the same job does not
perform both reads and writes to the I/O system. Therefore, the min-

3

imum workload for any application is a task of two independently
scheduled jobs. The applications differ primarily in the amount of
computation and include

raw IPC

 (both periodic and aperiodic),

up-
sampling

,

down-sampling

, and a 128-tap

FIR filter

. The applications
are chosen to be simple so that they can be sped up and/or layered
atop each other to gradually increase the total system workload.
Background load in the form of aperiodic interrupt-driven tasks and
a control loop performing administrative work makes the system
less predictable and thus makes life more difficult for each sched-
uler. The same application code is executed on all three operating
systems (with minor RTOS-specific modifications) and is used to
determine the theoretical computational limit as well. The experi-
ments keep track of real-time jitter, response-time delay, and total
CPU energy consumption divided into

user

,

kernel

,

handler

,

 sema-
phore

, and

idle

 components.

1.4 Results

The performance measurements yield both predictable and surpris-
ing results. Predictably, as system load is increased, the RTOSs stud-
ied hit their job deadlines consistently until a critical system load is
reached, beyond which point the RTOSs miss deadlines with
increasing frequency and by increasing amounts of time. Also pre-
dictably, the fixed priority scheduler in NOS leads to complete
denial of service for lower-priority jobs when the critical system
load is reached. The surprising results include situations where the
industrial RTOSs schedule a substantial number of application tasks
too early, even under light system load. This is due to unexpected
interrupts and unaccounted-for task invocations that cause individual
job timing to be thrown off, but only occasionally. The problem is
that the RTOSs studied attempt to schedule jobs against a universal
clock instead of a relative clock.

The energy-consumption measurements show some interesting
results. RTOS energy overheads can be extremely high when run-
ning low-overhead tasks; if the task requires very little computation
time for each job invocation, the RTOS can easily account for 90%
of the processor’s energy consumption, and poorly considered idle
loops can double the system’s energy requirements. As a periodic
task’s complexity and CPU requirements grow, the proportion of the
energy spent in the RTOS diminishes significantly, and the effect of
the idle loop is also diminished. There is also an interesting trade-off
that the more complex RTOSs seem to have taken: while the bare-
bones scheduler has the lowest energy consumption, that consump-
tion scales with the workload. The more complex RTOSs have a
higher initial energy consumption, but this consumption does not
increase quickly as the user-level computational load grows. There-
fore, the energy consumption and CPU requirements of these sys-
tems are likely to be much more predictable than a simpler RTOS.

2 EXPERIMENTAL SET-UP

We use an execution-driven simulation of the Motorola M-CORE
processor that can run unmodified RTOSs. On this simulator we run
three different software configurations:

µ

C/OS-II, Echidna, and
NOS—the public-domain kernel, the industrial RTOS, and the sim-
ple multi-rate executive, respectively. We run several benchmarks
atop each of these, increasing the workload to the point where the
system fails to meet deadlines. We also ran the benchmarks without
any RTOS support, to obtain performance and energy-consumption
limits.

2.1 Motorola M-CORE Processor

The M-CORE is a low-power, compiler-friendly core designed spe-
cifically for the embedded market [19, 20, 27, 28]. It is a RISC-

based design that uses 16-bit instructions and operates on 32-bit
data. It has a simple four-stage single-issue pipeline, memory-
mapped I/O, an orthogonal general-purpose register file with 16 reg-
isters, and a duplicate “shadow” register file that privileged software
can enable instead of the regular register file. For this study, we sim-
ulate the processor at 20MHz, the same clock frequency as the eval-
uation hardware. The timing mechanism on the M-CORE evaluation
board is simple and offers precision on the order of 1

µ

s. It is a 2-byte
counter in I/O space that increments every 1.6

µ

s. Every 100ms
(every 62,500 ticks of the counter), the counter wraps around and
raises a timer interrupt to the CPU.

2.2 Application Code

The following describe the range of user-level code run in the exper-
iments.

Periodic Inter-Process Communication.

Periodic inter-process
communication (IPC) is the simplest of the benchmarks that was
used to evaluate performance. As mentioned above, the first job
grabs data off of the input I/O port and stores it into shared memory.
The second job takes that value from shared memory and writes it to
the output I/O port. There is no computation, only the movement of
data. This task represents the simplest possible two-job task possi-
ble.

Up/Down Sampling.

With up sampling (UP), the second job runs
at a higher frequency than that of the first job. Only a fraction of
times that the second job has run will there be any new information.
Therefore the second job carries out a basic form of interpolation. In
down sampling (DOWN), the first job runs at a higher frequency
than the second job. The second job takes all of the values that have
been brought in by the read job since last time that second job has
run, averages them, and then outputs that average to the output I/O
port.

Finite Impulse Response Filter.

The finite impulse response (FIR)
filter is the most computation intensive of the four benchmarks. The
second job runs a 128-tap filter on the data that has been collected by
the first task. For each run of the second job, the last 128 values to be
inputted by the first job are used to compute an inner product, and
that value is outputted to the I/O port.

Background Load.

To add some non-determinism to the evalua-
tion of these two operating systems, and to offer more realistic simu-
lations indicative of real-world systems, two different additional
tasks were created. These tasks can be run concurrently with the
above listed benchmarks to provide a background load. These two
tasks are a periodic control loop and an aperiodic inter-process com-
munication process.

Control Loop:

The control loop (CL) was created to run in the
background at a period of 32ms to simulate the background
load that many embedded systems have running while they are
performing other tasks, such as a cell phone that has a task that
runs every so often to refresh its LCD display. This control loop
performs several memory lookups with an index that is
randomly generated.

Aperiodic Inter-Process Communication:

The aperiodic
inter-process communication (AP-IPC) task is run when a
simulated I/O interrupt is generated by the hardware. It calls a
user-level function in response that writes to the I/O space. This
is the mechanism used to determine system response time
under load. The interrupt inter-arrival times obey a geometric
distribution: the emulator generates an interrupt every 100

µ

s

4

with a probability of 0.01, giving an average of 100 interrupts a
second.

2.3 Characterization of Real-Time Behavior

As mentioned earlier, we measure three things: jitter, delay, and
cycle-by-cycle energy consumption.

Jitter:

Jitter is measured by keeping track of inter-arrival times
of periodic output. For example, if a task is scheduled to write
an output value every ten milliseconds, its average inter-arrival
time should be ten milliseconds. Any variation in the inter-
arrival time represents output that fails to arrive on time.

Note that this differs slightly from the traditional definition
because if a scheduler happens to execute a task consistently

late

, it will nonetheless appear

on-time

 to the external world.

Delay:

Delay is measured by keeping track of the time between
actions in aperiodic stimulus-response pairs. In the

aperiodic-
IPC

 workload, we keep track of the delay between the I/O
interrupt that signals the input and the time that the application
output is received at the I/O system (as opposed to the time that
the handler is invoked or the moment that the output to I/O
system is initiated). This represents the response time of the
system as a function of system load.

Note that this differs significantly from traditional definitions of
interrupt latency, which characterize a system by the time
interval from raising the interrupt to executing the handler for
that interrupt. Moreover, traditional measurements of delay
give a single number, whereas we present a distribution.

Energy consumption:

Energy consumed is tagged with the
currently executing instruction’s program counter, indicating
what function in the system is being executed. We categorize
all behavior into

user

,

kernel

,

handler, semaphore

, and

idle

components. Note that in the theoretical limits there are no
kernel, semaphore, or handler components.

2.4 Real-TIme Kernels

The uC/OS-II Kernel.

The

µ

C/OS-II real-time kernel is a full-fea-
tured preemptive multitasking RTOS [16]. It is portable, targeted at
both microcontrollers and DSPs, and it currently runs on over fifty
different instruction-set architectures. It is designed to have a small
footprint: there are roughly 1700 lines of code in the OS (including
comments), and modules are only compiled into the executable if
used by the application. Multi-tasking is preemptive, and the kernel
can preempt itself. The system can run up to 64 tasks, with 8 of those
tasks reserved for the kernel’s use. It provides traditional OS ser-
vices such as IPC, semaphores, and memory management, and it
also provides time-related features such as the ability to sleep until a
specified time and callout functions in which an application can
specify code to execute on task creation, task deletion, context
switch, and system timer tick.

Because

µ

C/OS-II has no concept of a periodic task, we used two
facilities within the kernel to implement periodic job invocations.
Each job sleeps on a unique semaphore, and a user-level task is
attached to the clock interrupt (

µ

C/OS-II allows user-level code to
be attached to arbitrary events). This user-level task keeps track of
the job invocation times and generates wakeup messages when the
job periods are reached. The inter-process communication method is
message-passing.

The Echidna RTOS.

Echidna is a scaled down version of the Chi-
mera RTOS [24] that replaces Chimera’s concept of a process
(which is notionally similar to that of POSIX threads) with port-

based objects [25]. It is designed to support dynamically reconfig-
urable real-time software and is targeted for 8-bit to 32-bit micro-
controllers as well as DSPs, whereas Chimera was intended for 32-
bit multiprocessor systems due to its relatively high overhead.
Echidna, like Chimera, provides cooperative multitasking. It offers a
good deal of functionality in a small footprint—as little as 6KB,
depending on the configuration. The design concepts embodied in
the RTOS are described in more detail in [5].

Echidna is designed to support only periodically scheduled tasks,
and its periods are defined in terms of milliseconds (no finer granu-
larity is supported by the OS). The inter-process communication
method used is shared memory. To calculate delay times, we create a
process with the smallest period possible (1ms) that checks to see if
an AP-IPC interrupt has occurred. If such is the case, then the AP-
IPC code will run. It is important to note that since an interrupt is
possible (though not likely) every 100

µ

s, and the interrupt is
checked only every 1ms, it is possible for two or more interrupts to
happen before any of them are serviced. This is an expected behav-
ior of non-preemptive systems.

The NOS Multi-Rate Executive.

NOS represents the type of
“roll-your-own” RTOS often produced in the embedded-systems
industry—it was designed in-house and is based entirely on descrip-
tions of home-grown embedded system software given by practicing
engineers in the embedded-systems industry [8]. NOS is a fixed-pri-
ority multi-rate executive for periodic tasks [15] and handles inter-
rupt-driven stimuli via masking interrupts and polling the interrupt
status registers when idle. Its main control loop is shown in Figure 1.

NOS’s callout queue is taken from the callout table in UNIX [3];
events to happen in the future are placed in the queue keyed by the
time at which they are expected to execute, and the

delta

 field in the

event

 structure represents the time difference between the event in
question and the one before it in the queue. The delta field of the first
event represents the invocation time relative to

now

. If the value is
negative, the deadline for the first task (and perhaps following tasks
as well) has been missed; if the value is zero, it is time to execute the
first task; if the value is positive, the first event is to happen at some
point in the future. One nice feature of this organization is that a
periodic task can easily be created by having a function place itself
back on the queue at the end of its execution.

NOS only handles a job or interrupt if there are no jobs or inter-
rupts waiting at higher priority levels. Therefore, at levels beneath
priority 1 (HARD jobs that have reached their time to execute), only
one job is executed before jumping back to the top of the control
loop—e.g., only one interrupt is handled before checking the callout
queue to see if any more HARD jobs are ready to run. It is a simple
fixed-priority scheduler with the expected weakness that low priority
jobs will be ignored indefinitely if there is enough work to do at a
higher priority.

3 EXPERIMENTS

For these studies, we execute the following benchmarks: periodic
IPC (

P-IPC

), up-sampling (

UP

), down-sampling (

DOWN

), and a
128-tap FIR filter (

FIR

). We also have a periodic control-type
administrative loop (

CL

) and interrupt-driven aperiodic IPC (

AP-
IPC

) that can be run concurrently with the benchmarks to provide
background load. The CL background task runs at 32Hz, and the
AP-IPC inter-arrival times obey a geometric distribution (we gener-
ate an interrupt every 100

µ

s with probability 0.01, resulting in an
average of 100 AP-IPC interrupts per second). We varied the follow-
ing parameters:

•

RTOSs: {

µ

C/OS-II, Echidna, NOS}

•

Periodic tasks: {P-IPC, UP, DOWN, FIR}

5

•

Workload: {1, 2, 4, 8 tasks}

•

Periods: {16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.064 msec}

•

UP/DOWN Sampling ratios:{2:1, 4:1, 8:1}

•

Background load: {AP-IPC, AP-IPC+CL, CL}

The studies represent the effective cross-product of these variations,
minus those configurations that lie beyond the point where the sys-
tem in question failed to meet deadlines. Also, Echidna will not
schedule periodic tasks with periods less than 1ms; therefore, we do
not have results for periods at 500

µ

s or below for Echidna. Remem-
ber that, by design, no job performs both reads and writes to I/O;
therefore, each task is actually two separately scheduled jobs.

3.1 Experimental Results: JITTER

As described above, jitter measurements represent the time deltas
between successive output seen at the I/O device for a given execut-
ing task. When multiple tasks are executing simultaneously, each
writes to a different I/O port, enabling the distinction between tasks,
and each task contributes equally to the data in the graphs.

The graphs shown are probability density graphs, centered on the
expected period. Data points at positive x-coordinates indicate late
execution; data at negative x-coordinates indicate early execution.
To keep the graphs readable, only non-zero y-values are shown, and
values have been gathered into 100

µ

s intervals.

1

Figure 2 presents the jitter measurements for the periodic IPC,

with background load and without. The periodic IPC task represents
the simplest possible case of two interacting jobs: the input job reads
input from I/O space and uses RTOS-supplied inter-process commu-

struct event {
struct event *prev, *next;
time_t delta; // invocation time delta from previous task; value for first task is relative to “now”
void (*execute)(); // function to execute at invocation time
char *data; // data to pass to function at invocation time
int priority; // HARD_DEADLINE or SOFT_DEADLINE

};

struct event *calloutq; // global linked list of tasks to perform

time_t update_calloutq(time_t t_now, time_t t_then)
{

if (calloutq) {
calloutq->delta -= (t_now - t_then);

}
return t_now;

}

// ... buried down in main() somewhere:
struct event *eventp;
time_t t, time = now();
while (1) {

for (entryp=calloutq, t=(calloutq ? calloutq->delta : 1); entryp && t<=0; t=(entryp ? t + entryp->delta : 1)) {
if (entryp->priority == HARD_DEADLINE) {

entryp->execute(entryp->data);
entryp = free_entry(entryp); // returns entryp->next or NULL if last in list
time = update_calloutq(now(), time);

} else {
entryp = entryp->next;

}
}

if (HIGH_PRIORITY(interrupt_status())) {
handle_interrupt(HIGH_PRIORITY(interrupt_status()));
time = update_calloutq(now(), time);
continue;

}

if (calloutq && calloutq->delta <= 0) {
calloutq->execute(calloutq->data);
free_entry(calloutq);
time = update_calloutq(now(), time);
continue;

}

if (LOW_PRIORITY(interrupt_status())) {
handle_interrupt(LOW_PRIORITY(interrupt_status()));
time = update_calloutq(now(), time);
continue;

}

if (calloutq) {
delta = calloutq->delta; // has to be positive if we have gotten this far

} else {
delta = INDEFINITE;

}

sleep(delta); // wakes up only for interrupt or timeout

time = update_calloutq(now(), time);
}

Figure 1: NOS main loop—simple multi-rate executive with fixed priority scheme. Design based on descriptions of RTOSs built by designers in industry
[8], e.g. “The dispatch mechanism is a while(1) loop that does the highest priority thing, then the next highest, then the next highest, etc., in each case repeating
the loop without touching lower priority tasks if there is more to do on that priority ... This can be interrupt-based or completely polled depending upon hardware.”
In this case, all I/O is polled.

6

nication to send the data to the output job, and the output job sends
the received datum to another I/O port. There is no computation per-
formed other than moving data; this therefore represents the smallest
workload that a realistic application would schedule on an RTOS. It
is thus likely to exhibit the highest possible RTOS overhead.

The graphs show spikes of data points, usually centered at zero
(indicating an on-time arrival of output I/O), with any number of
data points on either side of the spike. The height of a data point
indicates the probability of seeing that time delta—for instance, Fig-
ure 2(d) shows that when Echidna is running 8 tasks with 16ms peri-
ods (16 jobs), roughly 20% of the jobs will execute exactly on-time,
40% of the jobs will execute a little early, and 40% of the jobs will
execute a little late; roughly 1% of the time the job executions will
be 50

µ

s off, in either direction. When the system load is 4 tasks (8
jobs), job executions are on-time roughly 85% of the time, and
missed deadlines are either too early or too late with roughly equal

1. Note that the probability density graphs do not smooth out as more data
is collected—for example, there are only minimal differences in graphs
generated from 50 million data points as compared to graphs generated
from 1 billion data points.

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

1 task
2 tasks
4 tasks
8 tasks

(b) Background=None, 2ms period (c) Backgound=None, 1ms period

(d) Background=AP-IPC+CL, 16ms period (e) Background=AP-IPC+CL, 8ms period (f) Background=AP-IPC+CL, 4ms period (h) Background=AP-IPC+CL, 1ms period

Figure 2: JITTER probability density graphs for P-IPC. The x-axis represents time deltas between successive I/O output events as they differ from the
expected period. Negative numbers mean a task ran early, and positive numbers mean a task has run late, in relation to the last task run. The y-axis indicates the
probability of each delta. The legend shows the symbols used to represent system load of 1, 2, 4, and 8 simultaneous tasks.

(q) Background=AP-IPC+CL, 1ms period (r) Background=AP-IPC+CL, 250µs period (s) Background=AP-IPC+CL, 64µs period

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time
(g) Background=AP-IPC+CL, 2ms period

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

1 task
2 tasks
4 tasks
8 tasks

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

1 task
2 tasks
4 tasks
8 tasks

(i) Background=None, 16ms period (j) Background=None, 2ms period (k) Backgound=None, 1ms period

(l) Background=AP-IPC+CL, 16ms period (m) Background=AP-IPC+CL, 8ms period (n) Background=AP-IPC+CL, 4ms period (p) Background=AP-IPC+CL, 1ms period(o) Background=AP-IPC+CL, 2ms period

uC/OS-II uC/OS-II uC/OS-II

uC/OS-II uC/OS-II uC/OS-II uC/OS-IIuC/OS-II

Echidna Echidna Echidna

Echidna Echidna Echidna EchidnaEchidna

NOS NOSNOS

(a) Background=None, 16ms period

7

probability and absolute value. When executing 1 or 2 tasks, job exe-
cution is always on time.

There are some obvious RTOS behaviors shown in the figure:
there is a workload level at which point the RTOS fails to meet dead-
lines. Once this line is crossed, most if not all of the output arrives
late every time (e.g. 8-task output in Figures 2(c), 2(h), etc). For
Echidna, this point is around 500Hz with 8 IPC tasks running; for

µ

C/OS and NOS, the point is above 1MHz, even for 8 tasks running.
Figure 3 presents the jitter measurements for the FIR filter. This

benchmark represents the largest computational overhead per job
invocation; as expected, it shows the same behavior as the IPC

benchmark, only at different periods—the system is overloaded
sooner, compared to IPC. The results are very similar to the IPC
results, except that they display slightly more variation in the timing.

An interesting result seen in the graphs is that, even at light work-
loads (e.g. tasks running with 16ms periods), Echidna and

µ

C/OS
execute a number of jobs too late—and an equal number of tasks too
early. We see that

µ

C/OS at task periods of 16ms cannot get more
than 50% of the tasks to execute on-time when the system is per-
turbed by occasional interrupts (see Figure 3(l)). What is happening
is that both RTOSs attempt to schedule tasks against a universal
clock. Future job invocations are not scheduled relative to the job

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

(a) Background=None, 16ms period

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

1 task
2 tasks
4 tasks
8 tasks

(b) Background=None, 2ms period (c) Backgound=None, 1ms period

(d) Background=AP-IPC+CL, 16ms period (e) Background=AP-IPC+CL, 8ms period (f) Background=AP-IPC+CL, 4ms period (h) Background=AP-IPC+CL, 1ms period

Figure 3: JITTER probability density graphs for FIR. The x-axis represents time deltas between successive I/O output events as they differ from the
expected period. Negative numbers mean a task ran early, and positive numbers mean a task has run late, in relation to the last task run. The y-axis indicates
the probability of each delta. The legend shows the symbols used to represent system load of 1, 2, 4, and 8 simultaneous tasks.

(q) Background=AP-IPC+CL, 1ms period (r) Background=AP-IPC+CL, 500µs period (s) Background=AP-IPC+CL, 250µs period

(g) Background=AP-IPC+CL, 2ms period

1 task
2 tasks
4 tasks
8 tasks

1 task
2 tasks
4 tasks
8 tasks

(i) Background=None, 16ms period (j) Background=None, 2ms period (k) Backgound=None, 1ms period

(l) Background=AP-IPC+CL, 16ms period (m) Background=AP-IPC+CL, 8ms period (n) Background=AP-IPC+CL, 4ms period (p) Background=AP-IPC+CL, 1ms period(o) Background=AP-IPC+CL, 2ms period

uC/OS-II uC/OS-II uC/OS-II

uC/OS-II uC/OS-II uC/OS-II uC/OS-IIuC/OS-II

Echidna Echidna Echidna

Echidna Echidna Echidna EchidnaEchidna

NOS NOSNOS

8

invocation time, but relative to the

intended

 invocation time. There-
fore, if a job is occasionally perturbed, it will be scheduled late on
one instance and “on-time” the next instance. Though this results in
the system missing a beat occasionally, it also means that if the dis-
turbance is periodic, as is the case if multiple periodic tasks want the
same invocation time, the missed beats will happen with probability
1, even if the workload is light. The systems would benefit from bet-
ter load-distribution algorithms. For example, if the future job invo-
cations were scheduled relative to the

actual

 job invocation time
rather than the

intended

 invocation time, the system would naturally
spread out the jobs, and it would only have late invocations during
the first round of invocations. We see exactly this behavior with the
NOS scheduler.

So what are the periodic disturbances? The most obvious distur-
bances are the tasks executing as background load. In Echidna, the
background control loop is a periodic task with period 32ms. There-
fore, it is executed every other job invocation for 16ms tasks, every
fourth job invocation for the 8ms tasks, etc. Whenever the control
loop runs, it pushes the actual invocation times of other jobs out
slightly so that they run late and then early on the next invocation.

The disturbance in

µ

C/OS is the aperiodic IPC interrupt that hap-
pens on average every 10ms. It has a higher priority than any of the
periodic application tasks, so it preempts application threads when-
ever it runs. The 16ms tasks are upset most by this (see Figure 3(l)),
because the interrupt displaces a user thread on roughly every other
job invocation (thus, only 50% of the job invocations are on-time).
As the user threads execute more frequently, the interrupt preempts
user threads with decreasing frequency, and we see that more job
invocations are on-time, even though the system load has increased.

Timing disturbances in real-time schedulers do not require unpre-
dictable background load, however. The UP and DOWN bench-
marks exhibit this interference even without any background load.
The simulation results for up-sampling are shown in Figure 4. The
top row represents Echidna without any background load. The sec-
ond row of graphs is Echidna with background load. The third row is

µ

C/OS without background load, and the last row is µC/OS with
background load. We see that both RTOSs allow applications to
interfere with themselves, even when tasks are scheduled with rela-
tively low frequencies. This is because the periods are not the same,
but they are not relatively prime (they are multiples of each other in

Figure 4: JITTER probability density graphs for UP. The x-axis represents time deltas between successive I/O output events as they differ from the expected
period—negative numbers indicate the output happened early. The y-axis indicates the probability of each delta. The legend shows the symbols used to
represent system load of 1, 2, 4, and 8 simultaneously executing tasks.

(a) Background=None, 8/4ms period (b) Background=None, 8/2ms period (c) Background=None, 8/1ms period (d) Background=None, 4/2ms period (e) Backgound=None, 4/1ms period

(g) Background=AP-IPC+CL, 8/4ms period (h) Background=AP-IPC+CL, 8/2ms period (i) Background=AP-IPC+CL, 8/1ms period (j) Background=AP-IPC+CL, 4/2ms period (k) Background=AP-IPC+CL, 4/1ms period

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l
T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l
T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

(f) Backgound=None, 2/1ms period

(l) Background=AP-IPC+CL, 2/1ms period

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

(m) Background=None, 8/4ms period (n) Background=None, 8/2ms period (o) Background=None, 8/1ms period (p) Background=None, 4/2ms period (q) Backgound=None, 4/1ms period

(s) Background=AP-IPC+CL, 8/4ms period (t) Background=AP-IPC+CL, 8/2ms period (u) Background=AP-IPC+CL, 8/1ms period (v) Background=AP-IPC+CL, 4/2ms period (w) Background=AP-IPC+CL, 4/1ms period

(fr Backgound=None, 2/1ms period

(x) Background=AP-IPC+CL, 2/1ms period

uC/OS-II uC/OS-IIuC/OS-II

uC/OS-II uC/OS-IIuC/OS-II uC/OS-II uC/OS-IIuC/OS-II

uC/OS-II uC/OS-IIuC/OS-II

Echidna EchidnaEchidna

Echidna EchidnaEchidnaEchidna EchidnaEchidna

Echidna EchidnaEchidna

1 task
2 tasks
4 tasks
8 tasks

9

this instance), so task invocations will coincide in time every Nth
invocation. Neither operating system manages to spread the tasks
out in time. Again, this is because both RTOSs schedule jobs against
a universal clock and not relative to previous invocation.

In summary, the dynamic-priority schedulers in Echidna and
µC/OS add a bit of intelligence to their decision-making that is not
found in NOS. However, NOS schedules jobs on-period when
lightly loaded and fails in highly predictable ways when overloaded
(i.e. missing deadlines), whereas Echidna and µC/OS both fail in
surprising ways when overloaded or even lightly loaded by execut-
ing tasks earlier than expected, sometimes by several milliseconds.

3.2 Experimental Results: DELAY

Our delay numbers represent the time between an AP-IPC interrupt
and the moment that the I/O system sees the corresponding output
from the AP-IPC task invoked as a result of the interrupt. Thus, the
delay measures the response time of the system in terms of when the
first reaction could take place.

The µC/OS-II kernel handles interrupts preemptively; both
Echidna and NOS use a polling technique. The difference between
Echidna and NOS is that the Echidna RTOS will not spawn a new

task as a result of an interrupt; this must be done by an application
task. Therefore, our Echidna interrupt-handler task is periodic with
the shortest possible period (1ms) and simply checks for IPC-related
interrupts whenever it executes, sending output to an I/O port when-
ever it finds that such an interrupt has happened.

The delay times are shown in Figure 5. These represent the range
of CPU from very light (1 IPC task, 16ms period) to very heavy (4
FIR tasks, 1ms period). As expected of a cooperatively multitasked
RTOS, Echidna’s response time is more-or-less evenly distributed
over a 1ms interval, until the system becomes heavily loaded, at
which point the execution time of the periodic interrupt-handler task
can vary by a significant amount (up to several milliseconds). Also
as expected, the preemptive µC/OS-II kernel handles interrupts with
absolute precision that is independent of application load. The NOS
system has the simplest interrupt handling mechanism of all, and its
response time is extremely good when the system is lightly loaded—
in fact, it is even faster than the preemptive µC/OS-II kernel, because
its cooperatively scheduled nature means that on task switch, no
state needs to be saved. As the system load increases, the average
response time of the NOS system increases, and it obeys a geometric
distribution corresponding to the average execution time of the
application’s jobs.

Figure 5: DELAY probability density graphs for ECHIDNA and NOS. The x-axis represents time between an interrupt being generated by an I/O device and
the corresponding output to an I/O port of the responding thread. The y-axis indicates the probability of each delta. All measurements are for configurations with
both types of background load (32Hz periodic control loop and aperiodic interrupt-driven IPC)—these delay measurements are for the interrupt-driven IPC that is
the background load. Results range from little foreground load (1 IPC task) to heavy foreground load (4 FIR tasks). Note that the y-axis scale is different for the
uC/OS graphs and that the x-axis scales are different in figures (c) and (i).

0 0.5 1 1.5 2
Delay(ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

0 0.5 1 1.5 2
Delay(ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

0 0.5 1 1.5 2
Delay(ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

0 0.5 1 1.5 2
Delay(ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

(a) ECHIDNA: 1 P-IPC task, 16ms period (b) ECHIDNA: 8 P-IPC tasks, 1ms period

(g) NOS: 1 P-IPC task, 16ms period (h) NOS: 8 P-IPC tasks, 1ms period

(c) ECHIDNA: 4 FIR tasks, 1ms period

(i) NOS: 4 FIR tasks, 1ms period

0 2 4 6
Delay(ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

0 2 4 6
Delay(ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

0 0.5 1 1.5 2
Delay(ms)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

0 0.5 1 1.5 2
Delay(ms)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

0 0.5 1 1.5 2
Delay(ms)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

ba
bi

lit
y

of
 R

es
po

ns
e

T
im

e

(d) uC/OS-II: 1 P-IPC task, 16ms period (e) uC/OS-II: 8 P-IPC tasks, 1ms period (f) uC/OS-II: 4 FIR tasks, 1ms period

10

3.3 Experimental Results: ENERGY CONSUMPTION

To get energy consumption, we ran each configuration for the same
amount of application iterations. The results are shown in Figures 6
and 7, which show the energy overhead one pays for an RTOS. This
closely mirrors the overhead one pays in terms of execution time as
well [4]. Results are only shown for the applications with the least
(IPC) and greatest (FIR) overhead per job invocation.

The IPC results in Figure 6 indicate several things very clearly.
First, at the extreme of performing essentially no computation at all
per job invocation, using an RTOS is overkill, even for a simple task
scheduler. For NOS, the kernel overhead increases energy consump-
tion by roughly a factor of twenty; Echidna and µC/OS-II eat up
even more. The implications are obvious: simply keeping track of
time and what task to execute at what time consumes considerable
energy and CPU resources, compared to simple I/O operations. Note
that the measurements are for a 20MHz microcontroller.

The FIR results in Figure 7 show that, for more realistic applica-
tions (bear in mind that FIR is still relatively light in computation
time at ~233µs per invocation), RTOS kernel overhead is slightly
reasonable. The use of the NOS scheduler increases energy con-
sumption by less than a factor of two, and the Echidna and µC/OS-II
kernels increase energy consumption by less than a factor of three.

Several results can be seen in the data, from the obvious to the
not-so-obvious:

• Interrupt handling overhead is significant in systems that are
interrupt-driven and insignificant in the cooperative systems.
The latter makes sense, because in the polled systems, no state is
saved or restored during interrupt handling. The former is
interesting; the µC/OS-II kernel demonstrates that in heavily
loaded systems, it can use interrupts to off-load some of
Echidna’s overhead.

• The user components for the more sophisticated RTOSs
(Echidna and µC/OS-II) tend to be less than the user
components for NOS—and less than the limit, as well! This
simply represents the trade-off of being able to move some of the
functionality from the application into the kernel. However, in
the IPC graphs, the user components are higher—the low
computation requirements of IPC expose the user-level clock-
tick handler in µC/OS-II that runs every clock tick and wakes up
sleeping threads when their periods expire. This is present in all
applications.

• The systems all consume an enormous amount of energy doing
nothing, as represented by the idle components. This is because
none of the systems have an intelligent sleep mechanism that
can use less power when there is nothing to do; though the M-
CORE has such a facility (a doze mode that can be awakened by
a watch-dog timer interrupt), no system uses it. If implemented,
this would save considerable energy resources. Note, however,
that there is very little idle time as the system is pushed up to but
not beyond its limits, which is where embedded-system
engineers would like their systems to be, as this makes most
effective use of the CPU resources.

• The kernel overhead in NOS scales with the application
workload, while the kernel components in the other RTOSs is
more constant. The more sophisticated RTOSs do a better job of
ensuring that all computations are deterministic in the time and
energy it takes to perform them, which gives more predictable
system behavior. The cost is obviously a higher starting point for
energy consumption.

• It is cheaper to run tasks faster than to add tasks to the system.
For instance, in the FIR graphs, compare NOS:8 in Figure 7(a),
NOS:4 in Figure 7(b), NOS:2 in Figure 7(c), and NOS:1 in
Figure 7(d), which represent different trade-offs of speed and
number of tasks. The user components is the same for these
configurations, as the configurations all represent the same
amount of work: 2000 job invocations per second, broken down
as (respectively) 16 jobs, each scheduled every 8ms, 8 jobs, each
scheduled every 4ms, 4 jobs, each scheduled every 2ms, and 2
jobs, each scheduled every millisecond. Though the work is the
same, the kernel energy is not; this is seen in other
configurations as well as in NOS. The reason is simple: the
RTOSs maintain queues of tasks, typically as linked lists, which
grow with the number of tasks.

Please note that “idle” time is both time spent sleeping and time in
certain inactive loops. Just because Echidna still has idle time after
the system is overloaded with work does not mean that any more
useful work can be done.

4 CONCLUSION

We have described SimBed, a simulation-based environment for
evaluating the performance and energy consumption of embedded
real-time operating systems. The simulation environment was built

Figure 6: ENERGY COMSUMPTION graphs for IPC. The x-axis represents increasing workloads, as a result of increasing the number of executing tasks or.
The y-axis represents the total CPU energy consumption and breakdowns for how much energy is consumed by executing kernel code, executing user
application code, handling interrupts, performing semaphore handling, and sitting idle. Note that “idle” includes both time sleeping as well as some loop overhead
in the main loop—and parts of the timekeeping code for Echidna.

LIMITNOS ECHIDNA

(a) Task period: 16ms (b) Task period: 1ms

uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

E
ne

rg
y(

m
J)

1 2 4 8

LIMITNOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

E
ne

rg
y(

m
J)

1 2 4 8

Kernel

Application

Interrupts

Idle

Semaphore

11

to study hardware mechanisms that help facilitate low-power real-
time processing, as well as to quantify differences between design
and implementation in existing RTOSs. The simulator’s perfor-
mance measurement is accurate to within 100 cycles per million
compared to identical software executing on reference hardware. Its
energy measurement is accurate to within 10–15%.

We presented a study of preemptive and non-preemptive real-time
operating systems, focusing on two industrial-strength RTOSs
aimed at microcontrollers as well as DSPs. We compared these to a
raw scheduler that should represent the realistic performance and
energy-consumption limit for non-preemptive RTOSs, since it has
none of the overhead that would be found in a real RTOS, such as
support for semaphores, message-passing, etc. We find that RTOS
overheads for lightweight applications are very high—95% or
more—but that the overhead diminishes significantly for more com-
pute-intensive applications (down to 50% for Echidna and µC/OS-
II, 30% for the limit). There is also an interesting trade-off that the
more complex RTOSs seem to have taken: while the bare-bones
scheduler has the lowest energy consumption, that consumption
scales with the workload. The more complex RTOSs have a higher
initial energy consumption, but this consumption does not increase
quickly as the user-level computational load grows. Therefore, the
energy consumption and CPU requirements of these systems are
likely to be much more predictable than a simpler RTOS.

ACKNOWLEDGMENTS

The work of Kathleen Baynes, Chris Collins, Eric Fiterman, Chris-
tine Smit, and Tiebing Zhang was supported in part by NSF grants
EIA-9806645 and EIA-0000439. Bruce Jacob was supported in part
by these grants, NSF CAREER Award CCR-9983618, and by Com-
paq and IBM.

REFERENCES

[1] M. J. Bach. The Design of the UNIX Operating System. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1986.

[2] S. R. Ball. Embedded Microprocessor Systems: Real World Design.
Newnes, Butterworth–Heinemann, Boston MA, 1996.

[3] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A framework for ar-
chitectural-level power analysis and optimizations.” In Proc. 27th An-
nual International Symposium on Computer Architecture (ISCA’00),
Vancouver BC, June 2000, pp. 83–94.

[4] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha.
“Power analysis of embedded operating systems.” In 37th Design Au-
tomation Conference, Los Angeles CA, June 2000, pp. 312–315.

[5] Embedded Research Solutions. Embedded Zone — Publications. ht-
tp://www.embedded-zone.com, 2000.

[6] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy,
D. Patterson, T. Anderson, and K. Yelick. “The energy efficiency of
IRAM architectures.” In Proc. 24th Annual International Symposium

LIMITNOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

E
ne

rg
y(

m
J)

1 2 4 8

Figure 7: ENERGY CONSUMPTION graphs for FIR. The x-axis represents increasing workloads, as a result of increasing the number of executing tasks or.
The y-axis represents the total CPU energy consumption and breakdowns for how much energy is consumed by executing kernel code, executing user
application code, handling interrupts, performing semaphore handling, and sitting idle. Note that “idle” includes both time sleeping as well as some loop overhead
in the main loop—and parts of the timekeeping code for Echidna.

(a) Task period: 8ms (b) Task period: 4ms

(c) Task period: 2ms (d) Task period: 1ms

LIMITNOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

E
ne

rg
y(

m
J)

1 2 4 8

LIMITNOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

E
ne

rg
y(

m
J)

1 2 4 8

LIMITNOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

E
ne

rg
y(

m
J)

1 2 4 8

Kernel

Application

Interrupts

Idle

Semaphore

12

on Computer Architecture (ISCA’97), Denver CO, June 1997, pp. 327–
337.

[7] J. Ganssle. “Conspiracy theory.” The Embedded Muse newsletter, no.
46, March 3, 2000.

[8] J. Ganssle. “Conspiracy theory, take 2.” The Embedded Muse newslet-
ter, no. 47, March 22, 2000.

[9] J. G. Ganssle. “An OS in a can.” Embedded Systems Programming,
January 1994.

[10] J. G. Ganssle. “The challenges of real-time programming.” Embedded
Systems Programming, vol. 11, no. 7, pp. 20–26, July 1997.

[11] R. Gonzalez and M. Horowitz. “Energy dissipation in general purpose
microprocessors.” IEEE Journal of Solid-State Circuits, vol. 31, no. 9,
pp. 1277–1284, September 1996.

[12] J. K. M. Gupta and W. Mangione-Smith. “The Filter Cache: An energy
efficient memory structure.” In Proc. 30th Annual International Sym-
posium on Microarchitecture (MICRO’97), Research Triangle Park
NC, December 1997, pp. 184–193.

[13] J. Hennessy and M. Heinrich. “Hardware/software codesign of proces-
sors: Concepts and examples.” In Hardware/Software Co-Design,
G. De Micheli and M. Sami, Eds. 1996, pp. 29–44, Kluwer Academic
Publishers.

[14] M. Horowitz, T. Indermaur, and R. Gonzalez. “Low-power digital de-
sign.” In IEEE Symposium on Low Power Electronics, October 1994,
pp. 8–11.

[15] D. Kalinsky. “A survey of task schedulers.” In Embedded Systems Con-
ference 1999, San Jose CA, September 1999.

[16] J. J. Labrosse. MicroC/OS-II: The Real-Time Kernel. R&D Books
(Miller Freeman, Inc.), Lawrence KS, 1999.

[17] C. Liema, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya. “Sys-
tem-on-a-chip cosimulation and compilation.” IEEE Design and Test of
Computers, vol. 14, no. 2, pp. 16–25, April–June 1997.

[18] J. W. S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River NJ,
2000.

[19] Mcore. M-CORE Reference Manual. Motorola Literature Distribution,
Denver CO, 1997.

[20] Mcore. M-CORE MMC2001 Reference Manual. Motorola Literature
Distribution, Denver CO, 1998.

[21] D. Roundtable. “Hardware-software codesign.” IEEE Design and Test
of Computers, vol. 14, no. 1, pp. 75–83, January–March 1997.

[22] SimOS. SimOS: The Complete Machine Simulator. Stanford Universi-
ty, http://simos.stanford.edu/, 1998.

[23] M. J. Smith. Application-Specific Integrated Circuits. Addison-Wes-
ley, Reading MA, 1997.

[24] D. B. Stewart, D. E. Schmitz, and P. K. Khosla. “The Chimera II real-
time operating system for advanced sensor-based applications.” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp.
1282–1295, November/December 1992.

[25] D. B. Stewart, R. A. Volpe, and P. K. Khosla. “Design of dynamically
reconfigurable real-time software using port-based objects.” IEEE
Transactions on Software Engineering, vol. 23, no. 12, pp. 759–776,
December 1997.

[26] V. Tiwari and M. T.-C. Lee. “Power analysis of a 32-bit embedded mi-
crocontroller.” VLSI Design Journal, vol. 7, no. 3, 1998.

[27] J. Turley. “M.Core shrinks code, power budgets.” Microprocessor Re-
port, vol. 11, no. 14, pp. 12–15, October 1997.

[28] J. Turley. “M.Core for the portable millenium.” Microprocessor Re-
port, vol. 12, no. 2, pp. 15–18, February 1998.

[29] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye. “Ener-
gy-driven integrated hardware-software optimizations using simple-
power.” In Proc. 27th Annual International Symposium on Computer
Architecture (ISCA’00), Vancouver BC, June 2000, pp. 95–106.

