

1

VIRTUAL MEMORY

Prof. Bruce Jacob
Dept. of Electrical & Computer Engineering

University of Maryland at College Park
http://www.ece.umd.edu/~blj/

Virtual memory is a model—one of many possible models—for managing the resource of physical

memory, also called main memory. Such management is necessary because a microprocessor, the heart of

a computer, has direct access only to main memory, though all programs and data are stored on permanent

media such as hard disks. Reading or writing main memory is as simple as executing a single computer

instruction; in contrast, any access to hard disks, DVDs, CD-ROMs, or floppy disks is indirect and requires

relatively complex communication protocols involving dozens to thousands of computer instructions.

Therefore, accessing a file or running a program requires that the data on disk first be moved into main

memory. Virtual memory is one method for handling this management of data, and to illustrate what it is

and how it differs from other possibilities, we will compare several alternatives. Details on its mechanisms

can be found in the suggested readings listed at the end of the section, in particular two recent surveys by

Jacob & Mudge (1998a, 1998b).

Memory-Management Alternatives

The simplest model of program creation and execution is perhaps one in which a programmer

determines what physical memory is available, reserves it so that no one else uses it, and writes a program

to use the memory locations reserved. This allows the program to execute without any run-time support

required from the operating system and is therefore very low-overhead. However, this requires a rewrite of

the program every time it runs—a tedious task, but one that could be left to the operating system. At

process start-up, the operating system could modify every pointer reference in the application (including

loads, stores, and absolute jumps such as function calls) to reflect the physical address at which the

program is loaded. The program as it resides in main memory references itself directly and so contains

implicit knowledge about the structure and organization of the physical memory. This model is depicted in

Figure 2; a program sees itself exactly as it resides in main memory.

A second model is to write the program once using pointer addresses that are not absolute but are

instead relative offsets from the beginning of the program. If the location of the program in physical

© 2001 Thomson Learning. All Rights Reserved. No copying or re-use without the express permission of Thomson Learning is
permitted.

2

memory is a variable stored in a known hardware register, then at run-time one can load the program

wherever it fits in physical memory and place this location information in the known register so that all

memory references first incorporate this base address and are then redirected to the correct physical

location. This model is depicted in Figure 3; a process sees itself as a contiguous region or set of

contiguous regions, each with its physical location stored in a known hardware register. The advantage is

that, as opposed to the previous scheme, knowledge of the memory-system organization is not exposed to

the program. The disadvantage is that the program must be divided into a relatively small number of

contiguous segments, and each segment must fit entirely in main memory if it is to be used.

A third model is to write the program as if it is loaded at physical memory location zero, load the

program wherever it fits (not necessarily location zero), and use some as yet undefined mechanism to

translate the program’s addresses to the equivalent physical addresses while it is running. If the translation

granularity is relatively small (i.e. the program is broken down into smaller pieces that are translated

independently of each other), the program can even be fragmented in main memory—bits and pieces of the

program can lie scattered throughout main memory, and the program need not be entirely resident to

execute. This model is depicted in Figure 4. The advantage of this scheme is that one never needs to rewrite

the program. The disadvantage is the potential overhead of the translation mechanism.

The three models can be called physical addressing, base+offset addressing, and virtual

addressing. Physical addressing can be implemented on any hardware architecture, base+offset addressing

can be implemented on any architecture that has the appropriate addressing mode or address translation

hardware, and virtual addressing is typically implemented on microprocessors with memory-management

units (MMUs). The following paragraphs discuss the relative merits of the three models.

Physical Addressing.

In physical addressing, program execution behaves differently (in that different

addresses are used) every time the program is executed on a machine with a different memory

organization, and it is likely to behave differently every time it is executed on the same machine with

the same organization, since the program is likely to be loaded at a different location every time.

Physical addressing systems outnumber virtual addressing systems: an example is the operating

system for the original Macintosh, which did not have the benefit of a memory-management unit

(Apple Computer, Inc. 1992). Though newer Macintosh systems have an optional virtual memory

implementation, many applications require that the option be disabled during their execution for

performance reasons. The newest version of the Macintosh operating system, Mac OS X (Apple

Computer, Inc. 2000), is based on a Unix core and has true virtual memory at its heart.

3

The advantages of the physically-addressed scheme are its simplicity and performance. The

disadvantages include slow program start-up and decreased flexibility. At start-up, the program must

be edited to reflect its location in main memory. While this is easily amortized over the runtime of a

long-running program, it is not clear whether the speed advantages outweigh this initial cost for

short-running programs. Decreased flexibility also can lead to performance loss; since the program

cannot be fragmented or partially loaded, the entire program file must be read into main memory to

execute. This can create problems for systems with too little memory to hold all the running

programs.

Base+Offset Addressing.

In base+offset addressing, like physical addressing, program execution

behaves differently every time the program is executed. However, unlike physical addressing,

base+offset addressing does not require a re-write of the program every time it is executed.

Base+offset systems far outweigh all other systems combined: an example is the DOS/Windows

system running on the Intel x86 (Duncan et al. 1994). The Intel processor architecture has a

combined memory management unit that places a base+offset design on top of a virtual addressing

design. The architecture provides several registers that hold “segment” offsets, so a program can be

composed of several regions, each of which must be complete and contiguous, but that need not

touch each other.

The advantages of this scheme are that the code needs no editing at process start-up and that the

performance is equal to that of the physical addressing model. The disadvantages of the scheme are

similar to physical addressing: a region must not be fragmented in main memory, which can be

problematic when a system has many running programs scattered about main memory.

Virtual Addressing.

In virtual addressing, program execution behaves identically every time the

program is executed, even if the machine’s organization changes, and even if the program is run on

different machines with wildly different memory organizations. Virtual addressing systems include

nearly all academic systems, most Unix-based systems such as Mac OS X (Apple Computer, Inc.

2000), and many Unix-influenced systems such as Windows NT (Custer 1993) and Windows 2000.

The advantages of virtual memory are that a program needs no re-write on start-up, one can run

programs on systems with very little memory, and one can easily juggle many programs in physical

memory because fragmentation of a program’s code and data regions is allowed. In contrast,

systems that require program regions to remain contiguous in physical memory might become

unable to execute a program because no single unused space in main memory is large enough to

4

hold the program, even if many scattered unused areas together would be large enough. The

disadvantage of the virtual addressing scheme is the increased amount of space required to hold the

translation information and the performance overhead of translating addresses. These overheads

have traditionally been no more than a few percent.

Now that the cost of physical memory (i.e. DRAM) has decreased significantly, the schemes that

waste memory for better performance—physical and base+offset addressing—have become better choices.

Because memory is cheap, perhaps the best design is now one that simply loads every program entirely

into memory and assumes that any memory shortage will be fixed by the addition of more DRAM.

However, the general consensus is that virtual addressing is more flexible than the other schemes, and we

have come to accept its overhead as reasonable. Moreover, it (arguably) provides a more intuitive and bug-

free paradigm for program design and development than the other schemes.

How Are Virtual Addresses Translated?

In the virtual addressing model, programs execute in imaginary address spaces that are mapped

onto physical memory by the operating system and hardware; executing programs generate instruction

fetches and loads and stores using imaginary or “virtual” addresses for their instructions and data. The

ultimate home for the program’s address space is backing store, usually a disk drive; this is where the

program’s instructions and data originate and where all of its permanent changes go. Every hardware

memory structure between the CPU and the backing store is a cache—temporary storage—for the

instructions and data in the program’s address space. This includes main memory: main memory is nothing

more than a cache for a program’s virtual address space. Everything in the address space initially comes

from the program file stored on disk or is created on demand and defined to be zero. Figure 5 illustrates.

In Figure 5(a) the program view is shown; a program simply makes data loads and stores and

implicit instruction fetches to its virtual address space. The address space, as far as the program is

concerned, is contiguous and held completely in main memory, and any unused holes between objects in

the space are simply wasted space. In Figure 5(b) we see a more realistic picture; there is no linear storage

structure that contains a program’s address space, especially since every address space is at least several

gigabytes when one includes the unused holes. The address space is actually a collection of fixed-sized

“pages” that are stored piecemeal on disk and conjured up out of thin air; the instructions and initialized

data can be found in the program file, and when the running program needs extra workspace the operating

system can dynamically allocate new pages in main memory.

5

The enabling mechanism is the page table, a database managed by the operating system that

indicates, for every page in a program’s address space, whether the page is found on disk, or needs to be

created from scratch, or can be found in physical memory at some location. Every virtual address

generated by the program is translated according to the page table before the request is sent to the memory

system. To speed access to the page table, parts of it are held temporarily in hardware (this is one of the

functions of a memory-management unit). To find out more about page table organizations and hardware

support for virtual memory, see the two articles listed below by Jacob and Mudge (1998a, 1998b).

In conclusion, virtual memory is but one of many models of program creation and execution, one

of many techniques to manage one’s physical memory resources. Other models include base+offset

addressing and physical addressing, each of which offers performance advantages over virtual addressing

at a cost in flexibility. The widespread use of virtual memory in contemporary operating systems is

testimony to the fact that flexibility is regarded as a system characteristic with much value—value that

outweighs any small amount of performance loss.

Byline: Dr. Bruce Jacob, University of Maryland at College Park, http://www.ece.umd.edu/~blj/

Final word count: 1980

Acknowledgments

Bruce Jacob is supported in part by the National Science Foundation under NSF CAREER Award

CCR-9983618 and NSF grant EIA-0000439, by the Department of Defense under the MURI award

AFOSR-F496200110374, and by Compaq and IBM.

Bibliography

Apple Computer, Inc. Technical Introduction to the Macintosh Family

,

 2nd ed. Reading, MA: Addison-

Wesley Publishing Company, 1992.

Apple Computer, Inc. Inside Mac OS X: System Overview. Cupertino, CA: Apple Computer, Inc., 2000.

Custer, Helen. Inside Windows NT. Redmond, WA: Microsoft Press, 1993.

6

Duncan, Ray, et al. Extending DOS – A Programmer’s Guide to Protected-Mode DOS, 2nd ed. Reading,

MA: Addison-Wesley Publishing Company, 1994.

Jacob, Bruce, and Trevor Mudge. “Virtual memory: Issues of implementation.” IEEE Computer 31, no. 6

(1998):33-43. June 1998a. <http://www.ece.umd.edu/~blj/papers/computer31-6.pdf>

——. “Virtual memory in contemporary microprocessors.” IEEE Micro 18, no. 4 (1998):60-75.

July/August 1998b. <http://www.ece.umd.edu/~blj/papers/micro18-4.pdf>

7

Figures

MEMORY MANAGEMENT MODELS

PHYSICAL
ADDRESSING

BASE+OFFSET
ADDRESSING

VIRTUAL ADDRESSING CONTINUUM

Direct-Mapped ... Set-Associative ... Fully Associative

FULLY ASSOCIATIVE
VIRTUAL ADDDRESSING

Special Cache Organizations
of Main Memory

Traditional Virtual
Memory Mechanisms

Figure 1: Memory management models
There are at least three ways to manage physical memory. The first, physical addressing, uses physical addresses
in the program itself. The second, base+offset addressing, uses relative offsets in the program and adds the
physical base address at runtime. The third, virtual addressing, uses any appropriate naming scheme in the
program (usually relative offsets) and relies upon the operating system and hardware to translate the references
to physical addresses at runtime. Traditional virtual memory is therefore a small subset of the virtual addressing
model of memory management.

8

Program

Figure 2: The Physical Addressing model of program creation and execution
In this model, a program’s view of itself in its environment (physical memory) is equivalent to reality; a program
contains knowledge of the structure of the hardware. A program can be entirely contiguous in memory, or it can
be split into multiple pieces, but the locations of all parts of the program are known to the program’s code and
data.

Reality:

Program’s View of the World:

Physical Memory:

ProgramPhysical Memory:

Program

Program

Program

Figure 3: The Base+Offset Addressing model of program creation and execution
In this model, a program’s view of itself in its environment is not equivalent to reality, but it sees itself as a set of
contiguous regions. It does not know where in physical memory these regions are located, but the regions must be
contiguous; they cannot be fragmented.

Reality:

Program’s View of the World:

Region 1:

ProgramPhysical Memory: Program

ProgramRegion 2:

Program

Figure 4: The Virtual Addressing model of program creation and execution
In this model, a program’s view of itself in its environment has virtually nothing to do with reality; a program
can consider itself a collection of contiguous regions or a set of fragments, or one large monolithic program. The
operating system considers the program nothing more than a set of uniform virtual pages, and loads them as
necessary into physical memory. The entire program need not be resident in memory, and it need not be
contiguous.

Reality:

Program’s View of the World:

“Virtual” Memory:

Physical Memory:

Program

9

Figure 5: Caching the process address space in main memory
In the first view, a program is shown referencing locations in its virtual address space. All loads, stores, and
fetches use virtual addresses to reference objects. The second view shows that the address space is not a linear
object stored on some device, but is instead scattered across main memory and hard drives and even dynamically
allocated when necessary. The page table handles the translation from virtual address space to physical location.
Note that it has the same shape as the address space in figure (a), indicating that for every chunk of data in the
virtual address space (called a “virtual page”), there is exactly one translation entry in the page table.

DATA STORES

CPU:

DATA LOADS
and

INSTRUCTION
FETCHES

(Hardware Mediated)

Virtual Address Space

(a) PROGRAM VIEW

CPU:

(b) REALITY

Main
Memory

OS-MEDIATED

Page
Table

Backing
Store

Dynamically
Allocated

Data Space

