
Introduction to Engineering Design — 6-1
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

CHAPTER 6

BUILDING A HOVERCRAFT CONTROL
SYSTEM IN ROBOTC

1. INTRODUCTION: PROGRAMMING
CONCEPTS
The computer is basically a calculator, just without the push buttons. There is little (in most cases,
nothing) that a computer can do that a calculator cannot; the one thing that separates the two is the
way that they are controlled. A push-button calculator is controlled when a person presses its
buttons, which causes it to perform various functions—in particular, the functions that the person
wanted, acting in the order that the person pushed the buttons, on whatever data the person entered
into the calculator … by pushing buttons.

The computer is fundamentally identical to this picture: a person gets a computer to perform
specified functions in a specified order, on data that is either entered into the computer by the person
or gathered by the computer from its environment at run time. The only significant difference is that
there is no button-pushing; the person controlling the computer must decide ahead of time what
functions to perform, and, because the data values might not be known until run time, the person
must anticipate the possible values and provide contingency plans. For example, a person using a
calculator to perform a complex calculation will stop halfway through if it is clear that the divisor of
a term is zero or so near to zero as to produce an essentially infinite result. There is no such human
oversight at the time of running a computer program, so the possibilities must be written explicitly
into the sequence of steps, in this case by checking the value of a divisor against zero before using it
in a division operation.

This, then, is the main point to remember when writing control systems for computers: that
they are like very fast, very small (and trusting) children. They will do whatever you tell them to,
even divide by zero, a billion times a second, so it is up to you to be quite certain that what you tell
them to do is exactly what you want them to do, because 999,999 times out of a million, any
perceived misbehavior on the part of a computer is due to a design error in the program—i.e., it is
doing precisely what you told it to do.

What makes autonomous control interesting (and extremely challenging) is the interplay
between the computer program and the real-world environment in which the computer finds itself.
When you drive a car, you are well aware of your senses, and you respond to what you see and hear
by changing the car’s controls (steering wheel, accelerator, brakes, etc.). You also anticipate the

6-2 — Chapter 6
Building a Hovercraft Control System in ROBOTC

behavior of the car; for instance, you probably prepare for a right-hand turn well before you reach
the street at which you intend to take the turn. When you control an RC hovercraft, you do
essentially the same thing: you watch what the hovercraft is doing, how much it drifts when you turn
off the fans; you also anticipate where it will be and how much to correct for oversteer and tailspin in
making turns.

What you will find the most challenging is how to operate in an environment where your
senses are taken from you and replaced with far simpler and far more limiting ones. Compared to
your senses, the hovercraft you build will have extremely rudimentary sensory inputs—such as
binary tape detectors (light sensors detecting the presence or absence of a black tape underneath),
distance sensors, and/or gyroscopes. Unless you explicitly create it in your program, your hovercraft
will have no ability to remember past behavior (e.g., where it was a moment ago and what it was
doing) or anticipate future stimuli and prepare for appropriate reactions.

What is Programming All About?

You have a set of resources at your disposal, for example:

• Computer/s (one or more microprocessors)

• Memory (temporary and/or permanent storage)

• Input devices (sensors)

• Output devices (actuators)

You also have a set of desired behaviors, for example:

• Follow a path

• Avoid hitting obstacles

• Turn on/off lamp when handclap detected

• Play brief salsa motif when simple task accomplished

A program is the connection between these two sets of things; it is your way to tell the system (e.g.,
hovercraft) how to behave. For instance, here is a program that will cause a walking robot to follow
a path:

do the following forever:
if on the path and the path is in front of you

take a step forward
otherwise

turn slightly to the right

It should be relatively clear what this does, and how it does it. The robot is instructed to take a single
step at a time and only when it is guaranteed that the step will keep the robot on the path (the “take a
step forward” action is only allowed if the path is directly ahead). When the path is not directly
ahead, the robot turns, a little bit at a time, until the path is directly ahead.

But what else does the robot do? What would be expected behavior of the robot, and what
would be unexpected? Is walking the wrong way down the path an expected behavior? How about
spinning in one place, forever? How about walking in circles or in a zig-zag manner? Should we
expect the robot to exhibit any of these behaviors?

One should be able to look at code and imagine all its possible behaviors. For instance, at
the end of the path, we should expect the robot not to stop, but to make a 180-degree turn, little by

Introduction to Engineering Design — 6-3
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

little, and return the way it came, so walking backward down the path is expected. How about doing
this before we reach the end of the path—is that possible? Consider cases in which the path turns to
the left, or the robot is walking at an angle a little to the right of the path—the robot will reach the
edge of the path, at which point there will be no path directly ahead, and the robot will turn to the
right until it is facing the way it came, at which point it will walk the wrong way down the path.

Can the robot spin in one place forever? What happens if it starts off the path, or if it
accidentally steps off the path? In those circumstances, you should expect the robot to spin forever,
because the code will not allow it to take a step unless the robot is already standing on the path. In
addition, if the “slight” amount the robot turns is about 90 degrees and the robot is pointing 45
degrees away from the direction of the path, no matter how many times the robot turns, it will never
face down the length of the path, and so it will never take a step forward. How about walking in
circles? Is that ever possible? Yes, in scenarios similar to the one above (if the degree of turning
and width of the path are just right). How about a zig-zag motion? Since the code does not ever
have the robot turn left, this would be an unexpected behavior.

These are the types of questions that it is well worth asking of your code, as even the
simplest code can produce complex behaviors. Will the code work if the robot starts out off the path,
for instance next to it but facing it? Or how about starting off next to it but facing away? Is the code
robust enough to handle unexpected situations, such as walking in a line that is just slightly askew,
so that after some number of steps the robot finds itself off the path? Or what if the steps that the
robot takes are so large that it could step off the path when close to the edge?

Here is a more robust version of the code, one that handles many of these odd conditions:

do the following forever:
if the path is in front of you

take a step forward
otherwise

turn slightly to the right

Can this spin forever? Yes, but only if the path is out of sensory range. Can this walk in circles?
Just like before, it depends on the degree of turning and the width of the path relative to the step size.
Unlike the previous code, this handles situations where the robot is not on the path, for instance at
start or if the robot accidentally steps off the path; it also handles cases where the robot is pointing
slightly askew relative to the path. Zig-zag is unlikely to happen, but the robot can still accidentally
turn around and walk the wrong way down the path if it hits the right edge of the path before
reaching the end of the path. The following would be an obvious solution to that problem:

do the following forever:
if the path is in front of you

take a step forward
otherwise

turn slightly toward the path

This avoids making 180-degree turns before the end of the path, but this code presupposes the ability
to know just where the path is. Previously, all code worked with simple binary detectors: i.e., the
path is or is not in front of us. This last piece of code requires more information: the path is in front
of us, or, if not, we can tell whether it is to the left or to the right of us. Depending on the types of
sensors you have at your disposal, this information may be trivial to get, or it may be impossible to
get, and so understanding the abilities of your sensor devices is crucial in the development of your
system’s capabilities.

Just as important is understanding the abilities of your actuators: for instance, how is it that
you cause the robot to turn? How do you know how far it turns each time? Do you need to know

6-4 — Chapter 6
Building a Hovercraft Control System in ROBOTC

whether you are pointing straight or not, and, if so, how do you verify it? What actuator “takes a
step forward” for you? How does it work? How far forward do you travel, and does the robot halt
immediately after a step, or come to a “rolling stop,” or drift significantly (e.g. if the robot is actually
on wheels or rollers or floating off the ground)?

What is the NXT?

We will describe the Lego NXT controller in more detail a few pages from now, but here it is
worthwhile to look at it in purely functional terms, including the sensory inputs that it accepts and
the actuators it can control.

The NXT is a small computer, and so it can be programmed like any other computer. Its
advantages are firstly that it is lightweight and battery powered and thus makes a good hovercraft
controller (as opposed to a desktop or even laptop computer, which would weigh too much for a
small hovercraft), and secondly that it has a diverse modular array of sensors and actuators designed
to work with it, for instance:

• light sensor — a sensor returning a value proportional to the amount of light it detects, which
can be used to determine the lightness/darkness of the terrain that you are traveling over or
to head toward a bright light in the darkness

• accelerometer — a sensor returning values proportional to the amount of acceleration it
detects along 3 axes, which can be used to measure a system’s movement in 3 dimensions
(acceleration is the 1st derivative of velocity and the 2nd derivative of position) … note that
the accelerometer measures both its movements and the effects of gravity, the sensor’s
constant acceleration in the up/down direction

• gyroscope — a sensor returning values proportional to the angular rotation it detects, which
can be used to measure a system’s movement in three dimensions, much like an
accelerometer; its advantage is that, unlike the accelerometer, it does not also lump together
the effects of movement and the effects of gravity

• compass — a sensor returning a heading (which way it is pointing relative to Magnetic
North), which can be used to keep a system pointing in a known direction

• proximity sensor — an ultrasonic sensor returning a value proportional to the distance to the
nearest object along the line of sight, which can be used to sense when approaching
obstacles such as people, walls, traffic cones, etc.

• servo — an actuator that can be told to rotate any number of degrees, which can be used to
implement wheels for propulsion, wheels for steering, doors that open and close, robotic
arms, rudders and vanes, pulley systems, etc.

• motor — an actuator that can be told to spin at different speeds (i.e., run at different power
levels), which can be used to implement wheels for propulsion, fans/propellers, etc.

• home-grown actuators such as relays and transistors, which can be connected to the NXT by
customizing a Lego output cable (i.e., cutting and splicing) and that enable the NXT to
control actuators requiring much more power than the NXT is capable of delivering, such as
high-power lift fans and thrust fans—in particular, the kinds of fans you will need to power
your hovercraft

These are extremely powerful sensors and actuators. At any time, the NXT can read the values of
four different sensors connected to its inputs, and it can control the behavior of three different
actuators connected to its outputs. Your job in the development of your hovercraft’s control system

Introduction to Engineering Design — 6-5
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

is to determine which of these sensors and actuators make the most sense for you to work with, and
then to develop a control program that periodically reads the input sensors values and controls the
various actuators accordingly.

Examples of How To Get the NXT To Do Stuff

The following are some code samples of how to write RobotC code for the NXT. Do not worry if
the syntax is confusing; we will discuss C-language specifics in detail in the “C Programming
Basics” section of the chapter. This section is meant to serve as a preview.

The first example is a basic “hello, world” program, which just means that this is one of the
simplest possible complete programs that you can imagine.

task main()
{

nxtDisplayTextLine(3, “Hello”);
nxtDisplayTextLine(4, “World”);

}

This prints a message on the NXT’s LCD screen, taking up two separate lines of the display. Several
things to note:

• The task main statement indicates two things: first, that it is a “task,” a unit of code to
execute together that is delimited by the curly braces, and second that it is the “main” task,
which means that it will get executed first, before any other group of code that might be
found in the program.

• As mentioned above, the curly braces delimit the code—like parentheses in mathematics,
curly braces in C indicate what things should be grouped together.

• The print-out statements are function calls, wherein the stuff in the parentheses is the
function’s arguments—the instructions to the print-out mechanism. The first argument tells
the NXT which line on the LCD display to print on, and the second is a string (a bunch of
characters beginning and ending with double quotes) that tells the NXT what to print.

• All statements end in semicolons; this is a C-language convention.

Note also that the display function nxtDisplayTextLine can take additional arguments,
allowing it to print out variables (a tool that is quite useful for debugging). The following example
demonstrates this ability:

// Port to which the sensor is connected
const tSensors LightSensor = (tSensors) S1;

task main()
{

int light_reading;

/*
this is another way to specify comments -- everything between the slash-
asterisk and the asterisk-slash is ignored, within a line or multi-line
*/
while (true) {

light_reading = SensorValue(LightSensor);
nxtDisplayTextLine(2, “Light = %d”, light_reading);

}
}

6-6 — Chapter 6
Building a Hovercraft Control System in ROBOTC

This example has a bit more to it:

• The very first line begins with two ‘/’ slash characters. This is a comment: the double-slash
indicates that the rest of the line should be ignored by the NXT, as it only contains
information useful to the programmer. This is where you make notes to yourself in the code.

• The second line is actually generated by the RobotC programming environment (we’ll get to
that in class), and it declares that the object LightSensor is a sensor object that
corresponds to a light sensor plugged into input 1 of the NXT.

• The first line of the main task is a variable declaration. It specifies that the object
light_reading is to be used as an integer.

• The while (true) statement indicates that the subsequent code block (the set of
statements delimited by the curly braces) should get executed repeatedly, as long as the
value in parentheses evaluates to true. Since it is already declared to be true, that means the
code block will loop forever. This is how you implement the do the following
forever: statements in the pseudocode examples at the beginning of the chapter.

• The nxtDisplayTextLine function now has an additional parameter at the end: the
variable that we wish to print to the screen. Also in the string is the odd-looking “%d” which
indicates that a decimal-value integer will be printed out at that point.

So far we have shown how to print textual information to the NXT’s display and how to get read
data values from the NXT’s sensor-input ports. The following example shows how to drive values to
the NXT’s output ports:

// Port to which the sensor is connected
const tSensors LightSensor = (tSensors) S1;

task main()
{

motor[motorA] = 50;
motor[motorB] = 50;

wait1Msec(1000);

while (SensorValue(LightSensor) > 50) {
// do nothing, i.e. keep going

}

motor[motorA] = 0;
motor[motorB] = 0;

}

This starts up the NXT’s motors at a 50% power level (presumably driving wheels on the left- and
right-hand sides), which moves the NXT forward at about half speed. After a 1-second delay, the
NXT starts reading its input sensor value: it keeps reading the value over and over again while the
value is greater than 50 (a percentage value, indicating the presence of light). Once the light reading
is less than 50%, indicating the presence of a shadow or dark object, the while loop exits, and the
motor power levels are set to 0, turning them off. Some things to note:

• motor, motorA, motorB, etc. are all reserved keywords. This means that the NXT
expects them to be used in a certain way (as shown). So, for example, you can’t have a

Introduction to Engineering Design — 6-7
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

variable called “motor” or “motorB” that you read and write the way the variable
light_reading was used in the previous code example.

• The square brackets indicate an array, a C-language data structure that gathers together a set
of similar objects. The name of this particular array is “motor”, and the number in the
brackets is the index into the array—so in this example motor indicates an array of things
(probably motors), motorA being one and motorB being another.

• The value used to set a motor value is a number between 0 and 100, indicating a power level
corresponding to a percentage of maximum.

• The wait1Msec function does as one would expect: it stalls for the specified number of
milliseconds and then goes on. This stalls the execution of code, not the NXT, so while the
code is stalling, the motors are still running along at power level 50.

Returning to the earlier theme of fully understanding one’s code, how could this example produce
odd behavior? For instance, note that it does not have the behavior of moving forward until detecting
a dark spot and then stopping: it moves forward for a minimum of 1 second before it even looks for
lightness/darkness, so if the dark spot is small and less than one second of travel away, the NXT
could drive right over it without ever stopping—however, there are times when you might want
exactly this behavior.

The following starts detecting the lightness/darkness immediately and also gives an example
of time measurement:

// Port to which the sensor is connected
const tSensors LightSensor = (tSensors) S1;

task main()
{

int timeTaken;

ClearTimer(T1);
motor[motorA] = 50;
motor[motorB] = 50;

while (SensorValue(LightSensor) > 50) {
// do nothing, i.e. keep going

}

// found dark – stop & print results
timeTaken = time1[T1]; // stop timing
motor[motorA] = 0; // shut down motors
motor[motorB] = 0;

nxtDisplayTextLine(2, “Time = %d”, timeTaken);
}

This starts moving immediately and stops as soon as darkness is detected; in particular, if the NXT
starts on a dark spot, it will halt before the motors have much time to get moving. Like the “motor”
keywords, time1 and T1 are reserved keywords that must be used as shown: time1 is an array of
timers, T1 being one of those timers. The call to ClearTimer sets timer T1 to 0, so that the
reading of the timer later on (in the statement timeTaken = time1[T1];) gets the time in
milliseconds from the time of the clearing to the time of the reading. This gives the amount of time
the NXT spent driving around, searching for darkness.

6-8 — Chapter 6
Building a Hovercraft Control System in ROBOTC

Pseudocode as a First Draft

In the beginning of the chapter, some code was offered as example control programs, but the code
was written in English and probably would not run on any computer as-is. This is pseudocode, the
most commonly used form of sketching out one’s programming ideas.

In general, before writing a complex piece of software, one should formulate a reasonable
picture of what it is the program should do: just as an artist draws sketches before starting to paint, so
should an engineer sketch out the overall program before starting to write actual code. Pseudocode
is a popular medium because it tends to be self-explanatory, and, despite its simplicity, it can still
help discover design flaws, as we saw in the previous examples. For example, here is a rudimentary
vehicle-control algorithm for following a dark line on a light floor, assuming that the vehicle has two
downward-pointing light sensors (lightL and lightR) at the front, each one positioned on either side
of the line, and two motors (motorL and motorR) that provide forward thrust:

do forever:
read forward light sensors (lightL, lightR)
respond to the 4 possible combinations of values:

1. (light, light) –- sensors are straddling line
set motor speeds as follows:

motorL = 100%
motorR = 100%

2. (light, dark) –- lightR is on the tape, so turn right
set motor speeds as follows:

motorL = 100%
motorR = 50%

3. (dark, light) –- lightL is on the tape, so turn left
set motor speeds as follows:

motorL = 50%
motorR = 100%

 4. (dark, dark) –- we are perpendicular to the tape, so spin slowly
in a clockwise motion until we are not perpendicular to tape

set motor speeds as follows:
motorL = 20%
motorR = -20%

This is not a particularly robust program, but it does specify reasonably well what is intended and
how it will happen. Because the “code” is mostly human-readable English, it is self-documenting;
any engineer reading it should be able to understand what it is intended to do as well as how it
expects to go about it.

Note in particular the indentation; here, as in regular programming languages, the nesting of
statements indicates their “scope” … e.g., everything below and indented further right than the do
forever statement is subservient to that statement (it comprises a loop that will execute until the
computer is shut off); the numbered statements that are indented more than the respond to the
4 possible combos statement are the four possible sensor-value combinations, and one would
expect that only one could be true, so for any given sensor reading only one will execute; the
motorX = … statements are indented further right than the set motor speeds statements
above them, and so both motorL and motorR will be set if the previous set motor speeds
statement is executed.

Introduction to Engineering Design — 6-9
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

6.2 C PROGRAMMING BASICS
The RobotC environment does not implement the entire C programming language; it implements
only a subset, but the subset it implements is more than powerful enough to create just about any
control system you will need. This section offers a primer on the topic … in general, when a
complete valid statement is shown, it is terminated with a semicolon; code snippets without
semicolons at the end represent code that would be part of a larger statement.

Data Types

The following RobotC data types are at your disposal, not all of which are classic C types:

• Boolean values — Booleans are useful for specifying variables that indicate “true” or
“false” and nothing else in between. For instance, your code could use these to indicate
light/darkness detected by various sensors. Ultimately, they are represented by integers
having the value 0 (false) or 1 (true).

bool right_sensor_onTape;
bool left_sensor_onTape;

if (right_sensor_onTape) {
// do something

}

• Integers — We have seen integer values in the previous code examples; integers are
declared as “int” and hold positive or negative integers. In the NXT, they are 16-bit
quantities, so they hold values between –32768 and 32767. Any number outside of this range
does not exist, as far as the NXT is concerned; for instance, if you have the value 32767 in a
variable and you add the value 27 to it, the result will “wrap around” the number scale, and
you will be left with a large negative number.

• Floating point numbers — Floating point numbers are used to represent fractions, which
are otherwise not convenient to do with integers. For instance, if you did the following:

int a = 3;
int b = 5;
int c = a / b;

nxtDisplayTextLine(2, “Value = %d”, c);

you would get garbage results. The variable “a” would get the results of the division,
rounded down to the nearest integer, because a is incapable of holding a non-integer value.

float a = 3.0;
float b = 5.0;
float c = a / b;

nxtDisplayTextLine(2, “Value = %f”, c);

This works as expected. Note the “%f” in the display function … this indicates that the
variable is a floating-point number and should be interpreted and printed out as such.

6-10 — Chapter 6
Building a Hovercraft Control System in ROBOTC

• Characters — Characters are a subtype of integer; they are 8-bit quantities that range from
0 to 256 and are used to represent ASCII alphanumeric codes. They are declared as follows:

char a, b;

One thing to note about characters is that, while it is possible to use them like integers, it is
more convenient to use them as printable ASCII codes, as follows:

char a = 37; // this is valid, but only used in small computers
a = a + 1; // this is valid, but only used in small computers

char b = ’G’; // this is more often used

Note that when you use an ASCII value directly (like the letter G in the example above),
you need to put single quotes around it.

• Arrays — An array is an aggregate data type, in particular a linear set of similar data
objects. So, for example, you could have a bunch of integers packed together as follows:

int array[25];

This produces a grouping of 25 integers that are all packed together right next to one
another. They are accessed as follows:

array[0] // the first item in the array
array[1] // the second item in the array
array[i] // the “ith” item in the array (valid for 0 <= i <= 24)
array[24] // the last item in the array
array[25] // a bug in your code just waiting to wreak havoc

Note that the index into the array has to be an integer, and in particular it has to be a positive
integer value that is less than the size of the array, otherwise you get weirdness. If you index
into an array using an index value that is negative or equal to/larger than the size of the
array, you will be reading data, but not data that is part of the array; you’ll get garbage.

• Strings — A string is a character array, declared as follows:

string robotName = “wallE”;

Note the double quotes at the beginning and end. In particular, the double quotes at the end
come before the terminating semicolon. This will drive you nuts if you are American and
have spent the last two decades of your life being told by your teachers always to put the
punctuation inside the quotes. The rest of the English-speaking world is a bit more logical in
this regard.

• Structures — Like arrays, structs are another aggregate data type. While arrays are great
for collecting sets of similar data items, sometimes you want to create a set of potentially
heterogeneous objects. The C “struct” type allows just that. The following gives an example
of how to declare a struct:

Introduction to Engineering Design — 6-11
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

typedef struct {
int grade;
string firstname;
string lastname;
char letterGrade;
float GPA;
int examplearray[12];

} myStruct_t;

This example creates a new user-defined data type called a “myStruct_t” which can be used
to create variables in the same way that you can create variables of type bool, int,
float, and char. Note that not all the fields need to be of different type; for instance, one
could have a struct that is entirely integers. Also note that a struct can contain aggregate data
types like arrays (or even other structs).

The members of the struct are not indexed as in an array; they are referenced by name. The
following code snippet shows how to create an object of this type, as well as how the various
fields of the struct are referenced.

task main()
{

myStruct_t example;

example.grade = 10;
example.firstname = “Brockton”;
example.lastname = “Veendorp”;
example.letterGrade = ’A’;
example.GPA = 3.5;

if (/* student is graduating */) {
example.grade = example.grade + 1;

}
}

• Arrays of Structs — Often times, the main reason to use a struct is to create a whole array
of data records. The following is an example, which could be used within a hovercraft to
keep track of the previous 50 sensor readings.

struct {
int lightL;
int lightR;
int fanL;
int fanR;

} history[50];

For example, if sensor readings and corresponding actions were taken once every tenth of a
second, this would keep track of the last five seconds’ worth of light-sensor readings and the
power levels given to the two thrust fans. Individual components in this aggregate data type
would be referenced as follows:

history[10].fanL
history[i].lightR

6-12 — Chapter 6
Building a Hovercraft Control System in ROBOTC

One thing to note about the invocation above is that the syntax is slightly different than
shown in the previous section; specifically, there is no “typedef” keyword. Thus, this
statement creates an array of structs called history, but it does not create a type that can be
instantiated. The more complex method would be as follows:

typedef struct {
int lightL;
int lightR;
int fanL;
int fanR;

} state_t;
state_t history[50];

For the relatively small control programs you will write in this class, the simpler facility
(making a single struct, not a whole typeclass of them) is probably more than sufficient.

• Void — the non-type. For purposes of basic programming in RobotC, this is generally only
useful for declaring a function that does not return a value, i.e.

void turn_off_motor(int id)
{

motor[id] = 0;
return;

}

as opposed to the following, which returns an integer value:

int add_two_ints(int a, int b)
{

return a + b;
}

We’ll get into more detail on functions in the Control Structures section below.

Operations on Data

You can read data, you can write data, and you can perform various arithmetic and logical operations
on data. Examples are given below.

• Reading/writing data

a = 3; // assignment operation; puts the integer 3 into variable a
a = 3.5; // puts the floating-point value 3.5 into the variable a
a = b; // reads variable b and puts whatever is found into variable a
x = list[2] // reads the 3rd item in array “list” & writes it to variable x
list[0] = y; // reads y and writes it to the first item in the array “list”
list[i] = y; // puts y into the ith slot of the array, e.g.:

// if i=1, y is written into the second slot of the array;
// if i=32, y is written into the 33rd slot of the array; etc.

a[x] = b[y]; // yes, this is possible, and can be very useful
a[f(x)] = 1; // works if we know that function f returns an integer

// of the proper size

• Arithmetic and logic operations — these operations work on integers and floating point
numbers and produce a result of the same type as the input variables. So — add an integer to
an integer, and you get an integer; add a float to a float, and you get a float. Be careful when

Introduction to Engineering Design — 6-13
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

operating on variables of different types; while it can be very useful, it creates an unintended
bug 99 times out of 100. The following are examples:

a + b // addition
a – b // subtraction
a * b // multiplication
a / b // division
a++; // increments a by 1
a--; // decrements a by 1
a = b++; // reads b, puts it into a, and then increments b by 1

a & b // bit-wise AND function (e.g. 0010 AND 0110 equals 0010)
a | b // bit-wise OR function (e.g. 0010 OR 0110 equals 0110)
!a // logical negation (turns a non-zero number into zero, and

// turns a zero into a 1 – e.g. if a==0110, !a equals 0)
~a // bit-wise negation (e.g., if a==0110, ~a equals 1001)

a += b; // short-hand for a = a + b;
a -= b; // short-hand for a = a – b;
a *= b; // short-hand for a = a * b;
a /= b; // short-hand for a = a / b;
a &= b; // short-hand for a = a & b;
a |= b; // short-hand for a = a | b;

• Boolean operations — note that Boolean values are either 0 or 1 (false or true)

a == b // equivalence operation; produces a Boolean result
a != b // true if a does not equal b
a < b // true if a is less than b
a <= b // true if a less than or equal to b
a > b // greater than
a >= b // greater than or equal to
a = !b; // puts the Boolean negation of b into a
a = ~b; // puts the bit-wise negation of b into a
a && b // true if a is true (or non-zero) AND b is true (or nonzero)
a || b // true if a is true (or non-zero) OR b is true (or nonzero)

Control Structures

RobotC offers the following control structures for your code:

• Task — Perhaps the most fundamental control structure is that of the task, a RobotC-
specific mechanism that corresponds roughly to a running program. We have already seen
the main task; your program can have up to ten (10) others as well. Every task in your
program is almost like a separate program that can run alongside the original main task, just
as you can have Microsoft Word running alongside your browser, your email client, and
your session of Quake III Arena, all at the same time, all on the same computer. Usually
splitting out a program into separate tasks is done for convenience of logic and/or readability
of code. Here is an example that starts up a separate task to pulse the motors on and off,
something that you would need to do if you were to use relays instead of transistors to
control your motors.

6-14 — Chapter 6
Building a Hovercraft Control System in ROBOTC

// global variables – necessary since we can’t pass args directly to tasks
int motorA_power = 0;
int motorB_power = 0;

// reads motorA_power power value and “stutters” the output to motorA
// to approximate that power value -- loop 10 times per second
task stutter_motorA()
{

int mSec_on = motorA_power;
int mSec_off = 100 – mSec_on;

// loops ten times a second
while (true) {

motor[motorA] = 100;
wait1Msec(mSec_on);
motor[motorA] = 0;
wait1Msec(mSec_off);

}
}

// reads motorB_power power value and “stutters” the output to motorB
// to approximate that power value -- loop 10 times per second
task stutter_motorB()
{

int mSec_on = motorB_power;
int mSec_off = 100 – mSec_on;

// loops ten times a second
while (true) {

motor[motorB] = 100;
wait1Msec(mSec_on);
motor[motorB] = 0;
wait1Msec(mSec_off);

}
}

// assumes motorA is on left and motorB is on right
task main()
{

// start them up just so we know it is safe to stop them later
motorA_power = 0;
motorB_power = 0;
StartTask(stutter_motorA);
StartTask(stutter_motorB);

Introduction to Engineering Design — 6-15
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

while (true) {
if (/* sensor readings tell us we should turn right*/) {

StopTask(stutter_motorA);
StopTask(stutter_motorB);
motorA_power = 100;
motorB_power = 50;
StartTask(stutter_motorA);
StartTask(stutter_motorB);

} else if (/* sensor readings tell us we should turn left */) {
StopTask(stutter_motorA);
StopTask(stutter_motorB);
motorA_power = 50;
motorB_power = 100;
StartTask(stutter_motorA);
StartTask(stutter_motorB);

} else if (/* sensor readings tell us we should stop */) {
StopTask(stutter_motorA);
StopTask(stutter_motorB);
motorA_power = 0;
motorB_power = 0;
StartTask(stutter_motorA);
StartTask(stutter_motorB);

} else { // go forward
StopTask(stutter_motorA);
StopTask(stutter_motorB);
motorA_power = 75;
motorB_power = 75;
StartTask(stutter_motorA);
StartTask(stutter_motorB);

}
}

}

The main task starts up the tasks whenever it wants the thrust fans to go; the global values
are used to indicate the desired power levels for the fans.

The responsibility of the tasks is to buffer the main task from having to stutter the motors
(this is one way to effectively achieve a lower power level, which would be useful if you are
using relays and not transistors to control your fans). You can imagine how difficult it would
be if you had to intertwine into the main code loop the while(true) loops in the stutter
tasks that implement the timed on/off behavior. It would be nasty-looking code, prone to
exhibiting weird bugs, etc. The task allows the behavior to be consolidated in one place,
where it can be shut off at will and from outside the task. Unfortunately, RobotC does not
allow one to pass arguments directly to a task, thus the necessity of the motorX_power
global variables (which are a bit hack-ish).

We start the tasks with zero power levels at the beginning of the program (first actions of the
main task); this is done in case trying to stop a non-existent task turns out to cause a run-time
error (it may or may not; you might want to experiment to find out for yourself).

• Function — We have already seen functions in action. For instance, the StartTask and
StopTask primitives are functions predefined by RobotC. You can also declare your own
functions. When invoked, functions are unlike tasks in that they do not become independent
entities. That is, when you call a function, it is as if you executed the function’s code in
place. The following erroneous code example illustrates:

6-16 — Chapter 6
Building a Hovercraft Control System in ROBOTC

// takes as arguments the motor identifier and a power value and “stutters”
// the output to approximate that power value -- loop 10 times per second
void stutter_motor(int whichMotor, int powerLevel)
{

int mSec_on = powerLevel;
int mSec_off = 100 – mSec_on;

// loops ten times a second
while (true) {

motor[whichMotor] = 100;
wait1Msec(mSec_on);
motor[whichMotor] = 0;
wait1Msec(mSec_off);

}
return;

}

// assumes motorA is on left and motorB is on right
task main()
{

while (true) {
if (/* sensor readings tell us we should turn right*/) {

stutter_motor(motorA, 100);
stutter_motor(motorB, 50);

} else if (/* sensor readings tell us we should turn left */) {
stutter_motor(motorA, 50);
stutter_motor(motorB, 100);

} else if (/* sensor readings tell us we should stop */) {
motor[motorA] = 0;
motor[motorB] = 0;

} else { // go forward
stutter_motor(motorA, 75);
stutter_motor(motorB, 75);

}
}

}

This is an attempt to simplistically re-do the previous task-based example using functions;
the stuttering behavior is implemented in functions which are called by the main task,
instead of tasks that are started & stopped by the main task. This would be a more elegant
way, for example, to pass arguments from the main task to the subroutines that actually
perform the stuttering.

Though it might appear to be a more elegant way to write the previous code example, this
code fails to work: as soon as the stutter_motor function is called, it will go into an
endless loop and never return. This is not meant to disparage functions, merely an
illustration of how they differ from tasks. Functions are extremely convenient, as they allow
the passing of arguments (as shown) as well as return values. Because of this they allow a
programmer to use a modular approach to program design, wherein the low-level details of
how things are done are kept in very low-level functions, and the high-level functions (the
main task and the handful of functions it calls) can be written in such a way as to hide all of
those low-level implementation details.

Taking a modular approach tends to facilitate reading, understanding, and thus debugging
one’s code. For instance, the following code is a rewrite of the earlier example that uses a
function to initialize the global variables and start/stop tasks.

Introduction to Engineering Design — 6-17
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

// global variables – necessary since we can’t pass args directly to tasks
int motorA_power = 0;
int motorB_power = 0;

task stutter_motorA()
{

// as before
}

task stutter_motorB()
{

// as before
}

// takes as input power levels for motorA and motorB
void run_motors(int mA, int mB)
{

StopTask(stutter_motorA);
StopTask(stutter_motorB);
motorA_power = mA;
motorB_power = mB;
StartTask(stutter_motorA);
StartTask(stutter_motorB);
return;

}

// assumes motorA is on left and motorB is on right
task main()
{

// start them up just so we know it is safe to stop them later
motorA_power = 0;
motorB_power = 0;
StartTask(stutter_motorA);
StartTask(stutter_motorB);

while (true) {
if (/* sensor readings tell us we should turn right*/) {

run_motors(100, 50);
} else if (/* sensor readings tell us we should turn left */) {

run_motors(50, 100);
} else if (/* sensor readings tell us we should stop */) {

run_motors(0, 0);
} else { // go forward

run_motors(75, 75);
}

}
}

This code should be much easier to read than the original example upon which it is based.
This is the power of functions; whenever you see the same block of code happening over and
over again, with only minor variations, that is a sure bet that you should encapsulate the code
in a function call.

As mentioned, another aspect of functions is that they can return values, as in the following
code example.

6-18 — Chapter 6
Building a Hovercraft Control System in ROBOTC

const tSensors light1 = (tSensors) S1;
const tSensors light2 = (tSensors) S2;
const tSensors light3 = (tSensors) S3;
const tSensors light4 = (tSensors) S4;

float get_sensor_avg()
{

float avg;
int sum = SensorValue(light1);

sum += SensorValue(light2);
sum += SensorValue(light3);
sum += SensorValue(light4);

avg = (float)sum;
return avg / 4.0;

}

// prints out a new sensor reading every 0.1 second
task main()
{

while (true) {
nxtDisplayTextLine(2, “Avg = %f”, get_sensor_avg());
wait1Msec(100); // wait a tenth of a second

}
}

Among other things, this code example illustrates the C-language notation for casting data
types into other types, in particular how to create a floating-point number out of an integer.
The (float) notation in front of the variable name sum near the end of the function tells
the system to read the integer value of sum and then turn it into a floating-point number
before putting its value into the variable avg (which is a floating-point number).

• While loop — We have already seen the while loop in action. Formally, it takes as an
argument a Boolean statement (something that evaluates to either true or false) and
conditionally executes whatever code block comes after it. The important thing to remember
is this ordering: first the evaluation of the condition statement and then the execution of the
following code block. This happens repeatedly until the condition statement evaluates to
false, at which point the NXT moves on to execute the instructions that come after the while
loop.

while (condition) {
// code block to be executed (one or more instructions),
// often called the “loop body”

}
// following instructions

This produces a loop format, because the code block will be executed repeatedly until the
condition becomes false (the integer value 0). As soon as the condition evaluates to false, the
NXT jumps to the “following instructions” after the loop body.

Note again that the condition test happens before the loop body; this means that it is possible
for the loop body to be skipped, if for example on the first test of the condition it evaluates to
false. Sometimes, this is not desired; sometimes a programmer might wish for the loop body
to be executed at least once before evaluating the conditional value. This is what the do-
while loop is for, described next.

Introduction to Engineering Design — 6-19
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

• Do-while loop — As mentioned above, sometimes a programmer needs a loop structure in
which the loop body is executed at least once before evaluating the conditional value. For
this, the do-while loop is used, as shown below.

do {
// code block to be executed (one or more instructions),
// often called the “loop body”

} while (condition);
// following instructions

This structure is also a loop; the loop body will be executed repeatedly until the NXT
evaluates the Boolean condition to false. The difference is that the loop body is guaranteed
to be executed at least once, even if we know ahead of time that the condition is false, for
instance in the following (contrived) case:

do {
// loop body

} while (false);

This will execute the loop body once, then test the conditional which is hard-coded to be
false; the condition will fail, and the loop will terminate, passing control to the following
instructions.

One thing to note: the semicolon at the end of the while(); statement is required for a
do-while loop.

• For loop — The for loop is generally used for iteration; it takes the following form:

for (/*initialization*/ ; /*condition*/ ; /*update*/) {
// loop body

}

The semicolons between the three components (initialization, condition, update) are
required, even if a particular component is left blank. The components function as follows:

• initialization — This happens once, at the start of the loop, before the condition
evaluation. It is a good way to set up the variables that will be in use.

• condition — This is identical to the while-loop condition; it is evaluated before the
loop body, so if it evaluates to false on the first pass, the loop body is never
executed.

• update — This is a statement that is executed after the loop body and before the
next evaluation of the condition statement.

Here is a typical use of the for loop:

int i, array[1024];

for (i=0; i<1024; i++) {
array[i] = 0;

}

Note that the initialization and update components can have multiple statements, each
separated by commas.

6-20 — Chapter 6
Building a Hovercraft Control System in ROBOTC

• If/then/else — This control-flow structure was shown in an earlier code example. It allows a
programmer to specify one or more code blocks, at most one of which will be executed,
based on one or more conditionals.

A simple if-then example that executes the code body only if the sensor value satisfies some
conditional, so the code body may or may not be exeucted:

if (SensorValue(mySensor) < 50) {
// code body -- react to the sensor result

}

The following if-then-else example provides two options, one of which is guaranteed to be
executed:

if (SensorValue(mySensor) < 50) {
// turn left

} else {
// turn right

}

Having a simple else statement at the end of an “if” construct is the default case; it
specifies code that will be executed if all other conditionals fail. The following is a more
complex example:

int value = SensorValue(mySensor);
if (value < 25) {

// turn left
} else if (value < 50) {

// turn right
} else if (value < 75) {

// go back
} else {

// stop
}

Note that later conditions in an if-else control block are tested only if all earlier ones fail, and
later conditions are not tested if an earlier test succeeds, so only one code block will execute,
in particular the first to satisfy its corresponding condition. So the following would be an
error:

int value = SensorValue(mySensor);
if (value < 25) {

// turn left
} else if (value < 75) {

// go back
} else if (value < 50) {

// turn right
} else {

// stop
}

The third condition will never succeed; any value greater than 25 and less than 50 will be
caught by the second conditional. Note also that we read the sensor value only once and not
multiple times, which would have been the case, at least potentially, if we had placed the
SensorValue(mySensor) function call in each of the conditionals.

Introduction to Engineering Design — 6-21
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

• Switch — If you have a control structure similar to the following, where your conditionals
are, for the most part, testing for equality as opposed to greater than/less than, you might
want to use a switch statement:

int value = SensorValue(mySensor);
if (value == 1) {

// turn left
} else if (value == 2) {

// go back
} else if (value == 3) {

// turn right
} else if (value == 4) {

// spin around
} else if (value == 5) {

// stop
} else if (value == 6) {

// spin clockwise
} else if (value == 7) {

// spin counterclockwise
} else if (value == 0) {

// shut down
} else {

// blink lights
}

This type of construct can be difficult to read, and because it is difficult to read, it can harbor
latent bugs easily. A better construct is the switch statement, which would implement the
construct above as follows:

int value = SensorValue(mySensor);
switch (value) {

case 1:
// turn left
break;

case 2:
// go back
break;

case 3:
// turn right
break;

case 4:
// spin around
break;

case 5:
// stop
break;

case 6:
// spin clockwise
break;

case 7:
// spin counterclockwise
break;

case 0:
// shut down
break;

default:
// blink lights

}

6-22 — Chapter 6
Building a Hovercraft Control System in ROBOTC

At the switch (value) statement, the value will be read once, and the NXT will
immediately jump to which ever code block has the corresponding value expressed with its
case statement. The default case is not required but is an extremely good idea to use,
even if it is left empty by putting no code after it (perhaps include a comment to the effect
that the omission of corresponding code is intentional).

The various break; statements are required, except for the very last case in the list. If a
particular break; statement is omitted, the program will compile successfully, but at run-
time the control flow will “fall through” from one case to the next.

• Continue and break in loops — There are two statements that provide extremely powerful
ways to augment the behavior of loops. The continue statement causes a loop to halt mid-
loop and go directly to the top of the loop. For example, here is its use in a while loop:

while (true) {
int value = SensorValue(mySensor);
if (value == 1) {

// turn left
} else if (value == 2) {

// go back
} else {

continue;
}
// blink lights
// update state
// etc.

}

In this example, the continue statement causes the execution of the code to skip over the
stuff at the end of the loop (blink lights, update state, etc.) and go straight to the top of the
loop, at which point the conditional is re-evaluated, and the sensor value is read.

A break statement similarly disrupts control flow, but it instead causes control to exit the
loop entirely.

while (true) {
int value = SensorValue(mySensor);
if (value == 1) {

// turn left
} else if (value == 2) {

// go back
} else {

break;
}
// blink lights
// update state
// etc.

}

nxtDisplayTextLine(3, “Error situation”);

This example is just like the previous one, except that the continue statement is now a break
statement. This is one way to exit a loop that would otherwise execute forever. It is usually
used in loops to detect anomalous or erroneous situations; normal events should be reflected
in the while loop’s conditional.

Introduction to Engineering Design — 6-23
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

An additional note on loop and if/then conditionals: they are usually Boolean statements, statements
that evaluate to either 0 (false) or 1 (true). Because a computer only understands numbers, these are
represented with integers, which can have the value 2 or –37, or 1023, and so on. Thus, while it is
best practice to use code similar to this:

char x, array[1024];
int i;

for (i=1023; i > 0; i--) {
x = array[i];

}

it is just as valid to say the following (the only change to the code is that i > 0 has been replaced
by simply i).

char x, array[1024];
int i;

for (i=1023; i; i--) {
x = array[i];

}

Why does this work? Because the NXT checks to see if the conditional is zero or non-zero; it does
not do a strict test of 0 vs. 1. So any number other than 1 is considered equivalent to 1 for the
purposes of determining a Boolean result. As soon as the variable i reaches the value zero, both of
these loops will terminate.

6.3 THE LEGO® NXT® CONTROLLER
The NXT incorporates a microprocessor capable of storing programs that provide instructions for
controlling the fans and other actuators used in your team’s hovercraft. In this application, the
control of the fans was complicated by the need to steer the hovercraft and to control its speed
particularly around curves in the track. Moreover, the requirement is for autonomous control, which
implies that the NXT must be programmed so that it provides command signals to the lift and
propulsion fans that enable the hovercraft to negotiate the track in the minimum possible time.

Decision based control requires sensors in the system that provide feedback signals, which
give information essential in controlling the system. When the system is in operation, the sensors
provide continuous signals that are monitored by the NXT. When the level of a feedback signal
deviates sufficiently from a specified level, the power to one or more actuators (fans) is adjusted to
maintain the sensor signal within a control band centered about the control level. For decision-based
control to be effective, the microprocessor must be provided with instructions that establish the upper
and lower levels of the control band. Sensor signals that are outside the control band cause the
controller to energize actuators (fans), which adjust the parameters affecting the system so as to
maintain control. Programming for decision-based control is more challenging as the program
entails a more structure involving forks, jumps and loops and sometimes loops within loops.

The NXT, shown in Fig. 6.7, is a controller that contains an Atmel ARM processor
(AT91SAM7S256), which incorporates a high performance 32 bit RISC architecture. This processor
contains 256 Kbytes of flash memory (non-volatile) with single cycle access at 30MHz. It also
contains an additional 64 Kbytes of SRAM (static random access memory). The ARM processor

6-24 — Chapter 6
Building a Hovercraft Control System in ROBOTC

includes three different clocks to provide timing signals with frequencies that range from 22 to 42
kHz for the slow clock and 80 to 220 MHz for the PLL clock.

Fig 6.7 The NXT controls the
actions of autonomous robots and vehicles.
The NXT also contains an 8-bit Atmel co-processor (ATmega48) that is used with the main
processor for measuring voltage and controlling actuators. This processor contains 4 Kbytes of flash
memory (non-volatile) with single cycle access at 30MHz. It also contains an additional 512 bytes
of SRAM and 256 bytes of EEPROM memory. It has two 8-bit timer/counters, one 16-bit
timer/counter and a real time counter. Voltage is measured with an eight channel 10 bit analog to
digital converter (ADC). The 10-bit ADC in the NXT can acquire and store voltage measurements at
frequencies up to 200 Hz. Six pulse width modulated (PWM) channels are available in the co-
processor for supplying power to the motors and actuators, although the NXT only uses three of
these channels.

Communication between the NXT and a computer is accomplished with either a USB cable
or by Bluetooth wireless connection (radio). A CSR BlueCore™ 4 single chip radio and base band
integrated circuit is employed to implement a Bluetooth 2.4GHz system, which provides enhanced
data rates up to 3Mbps. The chip interfaces to 8Mbit of external flash memory and contains 47
Kbytes of RAM. When used with the CSR Bluetooth software stack, it provides a fully compliant
Bluetooth system for data and voice communications. The BlueCore™ transmitter is powered by a
6-bit digital-to-analog-converter with a dynamic range greater than 30 dB. Its receiver incorporates
channel filters and a digital demodulator for improved sensitivity and co-channel rejection. The
USB 2.0 communication port is capable of 12 Mbits/s.

Four input ports

Operator buttons

Speaker

USB portThree output
ports

LCD display

Introduction to Engineering Design — 6-25
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

The number of programs you can store in the NXT is only limited by the memory available.
The NXT microprocessor can perform both integer and floating point (decimal) mathematics. You
can program the NXT to read and write files to its memory.

Input Ports and Sensors

There are eight ports on the NXT. The four input ports are located on the base of the unit below the
display and control buttons, as shown in Fig. 6.7. These ports, numbered 1, 2, 3 and 4 are equipped
with a six wire interface that can receive both analog and digital signals from sensors. Instructions in
the LEGO User Guide for the NXT give the standard port locations for each of their sensors as:

Port 1: Touch sensor
Port 2: Sound sensor
Port 3: Light Sensor
Port 4: Ultrasound sensor

It is important to note that Port 4 is a high speed data connection that functions with an I2C
communication protocol, which is used with the LEGO ultrasonic sensor. The sensors are wired to
the input ports using the 6-wire industry standard RJ121 connector with right side adjustment.

Sensors are classified as either active or passive. The passive sensors do not require power
from the NXT to operate. The LEGO touch sensor, a simple momentary switch shown in Fig. 6.8,
and the LEGO sound sensor, a microphone shown in Fig. 6.9, are examples of passive sensors. On
the other hand, active sensors require power from the NXT to
function. The LEGO light sensor, which contains a IR light
source and a photodiode as shown in Fig. 6.10, is an example of
an active sensor. The LEGO ultrasonic sensor, shown in Fig.
6.11, requires a communication channel to accommodate the
timing signals required when bursts of sound are transmitted and
received.

Fig. 6.8 The LEGO touch sensor
(a contact switch) is a passive

device that does not require power
to function.

Fig. 6.9 The LEGO sound sensor (a microphone) is a passive device
that does not require power to function. It measures sound in

decibels (dB) or adjusted decibels (DbA).

6-26 — Chapter 6
Building a Hovercraft Control System in ROBOTC

Fig. 6.10 The LEGO light sensor is an active
device that requires power to light its IR source.
Its readings range from 1 (dark) to 100 (bright).

Fig. 6.11 The LEGO ultrasonic (sonar) sensor
requires a communication channel to send and

receive signals in order to measure time for sound
propagation to and from a target.

Output Ports

The three output ports, located on the top edge of the NXT above the LCD, are labeled as A, B, and
C. These ports are also equipped with a 6-wire interface to provide power (voltage pulses) to
motors, lights or sound making devices and to receive input from encoders that are installed in the
LEGO servo motors. Instructions in the LEGO User Guide for the NXT give the standard port
settings for the motors as:

Poet A: Motor for additional function
Port B: Motor for movement
Port C: Motor for movement

Each port may be operated in one of three modes—on, off and floating. When a port is programmed
in the on mode, a motor or actuator connected to that port receives pulse width modulated power.
When a port is programmed in the off mode, the motor actuator attached to that port is braked so it
stops abruptly. When a port is programmed in the floating mode, a motor connected to that port
does not receive power, but it is permitted to freewheel until it stops due to frictional forces.

Introduction to Engineering Design — 6-27
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

The LEGO servomotor, shown in Fig. 6.12, contains a small motor, gearing and an encoder.
The gearing increases the torque of the motor but decreases its speed. The motor is equipped with an
encoder that provides a signal which enables
measurement of the angle of rotation of the
motor shaft to within ± 1°. Two of the six
wires in the standard RJ121 connector are
used to connect the encoder signal to the
NXT.

Fig. 6.12 The LEGO servomotor is
connected to the output ports.

Fig. 6.13 Sensors and motors arranged around the NXT controller.

6-28 — Chapter 6
Building a Hovercraft Control System in ROBOTC

RCX motors and lights can be connected to the output ports of the NXT; however, an
adapter cable is required to interface with its 6-wire RJ121 connector. In addition several
companies1 are producing special purpose sensors and output devices that are compatible with the
NXT.

Communication with the NXT

Communication between the NXT and a computer is accomplished with either a USB cable or by
Bluetooth wireless connection (radio). A CSR BlueCore™ 4 single chip radio and base band
integrated circuit is employed to implement a Bluetooth 2.4GHz system. This chip provides a fully
compliant Bluetooth system for data and voice communications at rates up to 3Mbps. The USB 2.0
communication port is faster with a transfer rate of 12 Mbps.

The Controller Buttons and Display

Near the center of the NXT, you will notice a liquid crystal display (LCD) and four buttons as shown
in Fig. 6.7 and Fig. 6.13. The square orange button performs three functions—turns the NXT on,
enters (selects) the icon that appears in the lower center of the LCD window and runs the program
selected. The two light-gray triangular buttons are used for menu navigation as they to move the
various icons across the LCD window. The small dark gray rectangular button is used to cancel the
selection or to go back. It is pressed repeatedly until the “Turn-off” icon appears. Pressing the
orange button when this icon is centered in the LCD shuts down the NXT.

When the NXT is turned on a short tune is heard and three icons appear near the bottom of
the LCD, which include the “My Files”, “NXT Program” and “Try Me” icons. These and other
icons are defined in Fig. 6.14 to Fig. 6.17.
The gray triangular button enables you
move progressively among the various
options available. The icon of interest is
centered in the display and it is selected by
pressing the square orange button.

Fig. 6.14 The My Files icon and the three
types of files that are options for storage in

the NXT.

Storing Programs

The NXT stores three different types of programs as indicated in Fig. 6.14, which include sound
files, software files and NXT files. Programs written on a computer are downloaded into “software
files” and songs written on a computer are downloaded into “sound files’. Programs written directly
on the NXT without using a computer are stored in the “NXT files”. The NXT Program icon that
provides entry into a large number of commands available within the NXT is presented in Fig. 6.15.
The programs written on a computer are downloaded to the NXT by a USB cable connected to a

1 These companies include: www.mindsensors.com; www.techno-stuff.com; www.hitechnic.com; and
www.Imsensors.com.

Introduction to Engineering Design — 6-29
Book 9, 3rd Edition: Engineering Skills and Hovercraft Missions

computer’s serial port. The NXT can also send and receive signals with its Blue tooth technology.
When a program is successfully downloaded, the NXT responds with a burst of sound confirming its
transmission.

Fig. 6.15 The NXT program icon that enables programming to be
performed directly on the controller.

The signals from the sensors are monitored by selecting the “View” icon that is accessed on the LCD
by repeatedly pressing the triangular gray button. After the “View” icon is selected you have a
choice of monitoring the signal
from a large number of different
LEGO sensors as indicated in
Fig. 6.16. If a sensor is wired to
a port, its output can be
monitored on the LCD
independent of a program
running. In this sense, the NXT
is functioning as a digital
multimeter with its output
converted to the units of
measurement for the sensor
involved.

Fig. 6.16 The View icon
enables measurements from the
LEGO sensors to be monitored

on the NXT display.

6-30 — Chapter 6
Building a Hovercraft Control System in ROBOTC

When a program is running, the output from the sensors connected to the four ports is
displayed in a listing that is shown continuously on the LCD. The NXT display also shows the
output of its internal clock in hour, minute, second and tenth of a second running time for the
program. Turning the NXT does not reset its internal clock and the time displayed is cumulative for
a given program.

Fig. 6.17 The Bluetooth, Settings and Try Me icons
that enable communication, NXT adjustments and a

simple trial program.

The Bluetooth, Settings and Try Me icons are defined in Fig. 6.17. The Bluetooth icon
provides access to several icons not presented in Fig. 6.17, which include Contacts, Connections,
Search, On/Off and Visibility. The Settings icon enables access to Volume, Sleep and Deleting files.
The Try Me icon issues a burst of sound when it is selected.

