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Abstract.  The systematic design, validation, and verification of systems for biomedical 
experiments in laboratory and clinical applications are complex due to the highly stochastic 
nature of biological systems.  This paper presents a platform framework for the modeling of 
these biological components in the context of system-level analysis that enables formal 
validation and verification of biomedical devices.  Looking forward, the capabilities of this 
platform enable the development of more efficient and effective experimental biomedical 
systems.   
 

Introduction 
 
Problem Statement.  Biomedical systems designed for experimental purposes are a vital aspect 
of today’s medical field, from bench-top systems driving advances in biological science to 
bedside point-of-care devices in the clinical realm.  Devices aiding medical researchers in 
advancing the science and knowledge of physiological processes allow for the continued 
development of new medicines and treatment methods.  Similarly, devices that are capable of 
providing accurate diagnoses and prognoses of patients are necessary if this developing 
knowledge is to help clinicians improve the health and safety of future generations.   
 
The difficulty in developing systems for the purpose of biomedical assays is complicated 
immensely by the variant nature of biological systems (Endy 2005).  The development of 
biological organisms over time is dependent on a large number of factors unique to each system, 
including physiological processes, genetics, and environmental conditions.  Thus, the same 
inputs to such a system do not always result in the same set of outputs, making the design, 
validation, and verification of biomedical devices exceedingly difficult.  Furthermore, systems 
designed for experimental purposes in the biomedical field are becoming progressively more 
complicated (Csete 2002).  Researchers are becoming more interested in biological processes at 
the molecular level in an effort to treat ailments at their source, while clinicians are desiring tools 
capable of faster, more accurate, and less invasive patient analysis.  Due to these increases in 
complexity, the efficient design of biomedical systems is becoming more difficult and more 
costly, since current methods for system-level design are not capable of treating the highly 
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stochastic properties of biological components (Endy 2005).  Looking forward, it is clear that 
new methods for designing experimental biomedical devices at the system level will be needed if 
advances in medical science and treatment are to maintain or accelerate their current pace. 
 

 
 

Figure 1.  Surface reconstruction of a bacterial biofilm showing the highly variant nature 
of commonly studied biological systems 

 
Compounding the complexity of this problem is the knowledge disconnect that must be bridged 
between biological and engineering domains (Endy 2005).  Because of the complex nature of 
biological systems, understanding of this component of the larger biomedical system is typically 
limited to biologists and clinicians who are well versed in their fields (Oltvai 2002).  For 
example, the growth of bacterial biofilms such as that shown in Figure 1 has been linked to as 
many as 65 percent of all microbial infections in the human body (Potera 1999).  Such 
communities of microbes are extremely complex, making the prediction of their growth a 
limiting factor to design engineers attempting to develop new ways of treating or investigating 
these biological systems.  Thus, while the biologist or clinician may understand the biological 
component of a system but not the technologies needed to address their application, the design 
engineer may understand the state-of-the-art but lack the background needed to properly apply 
these technologies.   
 
To address this, design and development techniques must implement a method that enables one 
to validate and verify the system performance in the context of highly stochastic and complex 
biological components, thereby assimilating the two domains (Endy 2005).  Drawing upon the 
capabilities of systems engineering tools to model systems in the design phase, the development 
of platforms for engineering these experimental systems is a large step towards enabling the 
accurate development of biomedical devices.  Figure 2 expresses the methods in which these 
platforms would allow for the integration of the two system domains.  The application space 
defined by the clinician or systems biologist provides the necessary knowledge to model the 
operation of stochastic biological components.  The developed platforms then allow for the 
integration of such concepts with potential system architectures to create an overall design space 
that can effectively address the requirements of the experimental system.  In order to capitalize 
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upon the added capabilities of such a technique, two key tenets of this work are that (1) methods 
to succinctly model a breadth of biological systems must be developed and (2) these models 
must be able to integrate with system-level models capable of describing the performance of the 
entire engineering system.  Current methods and techniques for experimental biomedical device 
development simply are not capable of such full-system modeling. 
 
 

 
 

Figure 2. Application spaces motivated by biology and architecture design spaces 
motivated by engineering define an explorable design space 

 
 
Scope and Objectives.  In order to address the limitations of current design methods for 
experimental biomedical systems, the work presented here aims to develop platforms for the 
modeling, validation, and verification of device systems that contain highly stochastic biological 
components.  By integrating models of the biological system with models of the physical 
engineering system, system architectures can be achieved that will perform to match the 
requirement specifications of the particular application.  Models of biological systems can be 
used to analyze experimental devices that are used for applications dealing with both the 
advancement of medical knowledge, in which the stochastic elements are the biological systems 
themselves, and those pertaining to patient diagnosis and prognosis, in which the stochastic 
elements are the physiological responses of patients to a particular assay.   
 
By successfully implementing such platforms, developers of these devices can ensure that results 
obtained from experimental tests are trustworthy representations of what the biological system 
state is.  In another vein, these same techniques can ensure that the system will not enter an 
unstable state that would be otherwise unforeseeable if designing the system using traditional 
methods.  Figure 3 reveals the ways in which these concepts can be implemented at various 
levels of abstraction in order to aid the development of effective, reliable, and accurate 
biomedical devices.   
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Figure 3. Abstraction as a tool for the design of biomedical Ssystems with Integrated 
models of stochastic biological components 

 
Semi-formal models of the system architecture, including the requirements of the system and its 
proposed implementation via such modeling languages as UML or SysML can provide engineers 
with a high-level understanding of the system performance, thus aiding in more efficient and 
cost-effective redesign, validation, and verification.  These semi-formal models are supported at 
lower levels through detailed simulations of the system, including components that embody the 
stochastic biological elements.  By concentrating upon the integration of these stochastic 
components with well-defined physical systems, this work enables progress towards a level of 
confidence in experimental tests that was not previously obtainable for biomedical devices.  The 
benefits of these capabilities are far-reaching across the biomedical field by enabling the 
development of devices that are best suited for their applications, and thus most beneficial to 
clinical patients, and medical researchers in search of new drugs and techniques.   
 

Experimental Biomedical Systems 
 

Experimental Processes.  A typical experimental process in the biomedical field utilizing a 
device architecture is shown in figure 4.  Typically, the researcher or clinician begins with a 
hypothesis about their subject that is developed from prior data or patient symptoms (Tomlin 
2007).  For a medical researcher or systems biologist, this hypothesis may involve a parameter or 
process that the experiment is intended to verify.  Examples commonly include verification of a 
metabolic process, the effects of a compound on a biological system (i.e. candidate drug), or 
verification of unique characteristics of a certain organism.  For the clinician, a hypothesis may 
involve a patient diagnosis or prognosis, or may be geared towards determining an effective 
treatment for a patient’s verified medical condition.  With this hypothesis in place, an experiment 
is begun under ideally controlled conditions.  At the conclusion of the established assay, the 
researcher or clinician typically inspects the outcome to determine if the test was sufficiently 
successful or if alterations or repetition of the experiment is required.  Due to the highly 
stochastic nature of biological systems, such a feedback process is common in order to verify 
experimental results.  The goal of the design engineer is to develop device systems that can aid in 
reducing the number of iterations needed to achieve a required level of confidence in the result.  
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This is especially important in clinical applications, due to the patient discomfort often 
associated with invasive testing (i.e. prick tests to determine skin allergies).  Similarly, current 
medical research often utilizes high cost, low throughput methods of testing, giving strong 
motivation for the development of methods to limit the number of iterations needed to verify an 
experiment.   
 

 
Figure 4. SysML activity diagram for process flow of typical biomedical experiments 

 
The high cost, low throughput, and low repeatability of current biomedical testing techniques 
using established technologies and methods provides strong motivation for their continued 
development in the future.  However, in order to break from the current limiting approach to 
biomedical device development, new techniques are needed to aid in the maturation of new 
device systems.  The novel platforms presented here are a first step towards such methods, which 
can increase the overall efficiency of both device development and the operation of the devices 
themselves by optimizing the interactions of the biomedical elements with the physical system.   
 
Architectures for Experimental Biomedical Systems.  While the physical architecture of 
biomedical devices is diverse and typically suited to the needs of the particular application, most 
systems can be abstracted to the system architecture shown in figure 5.  System inputs are 
typically comprised of a number of different domains, including environmental conditions and 
actuation or application conditions (i.e. what is done to the biological system during the 
experiment).  Depending upon the requirements of the test, the physical system of the 
experimental device can take any number of forms but will typically have three distinct 
characteristics including: (1) a way to contain or integrate with the biological system or sample, 
(2) a way to control experimental conditions, and (3) a way to integrate with a sensor network for 
detection.  The sensing mechanisms utilized for experimental devices also vary depending upon 
the application, though they typically aim to strike a balance between minimizing invasiveness 
and achieving the required detection limits and sensitivity of the application.  The cumulative 
effect of the physical system and sensor networks’ interactions with the biological element 
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results in a set of potential outcomes from experiments, each of which having their own 
probability of occurrence.  These probabilities are dependent upon the stochastic biological 
system, providing at the simulation level a range of statistically relevant outcomes that can be 
used to confirm experimental results.     
 

 
 

Figure 5. High-level system architecture of biomedical device performance 
 
Most biomedical devices are constructed through a similar architecture, providing strong support 
for the development of generalized platforms for experimental device engineering.  Figure 6 
provides a high-level implementation of the system elements and their interactions at the 
component and subcomponent levels.   
 

 
 

Figure 6. SysML state machines of biomedical device components 



 7 

The platforms discussed subsequently exhibit a flexible structure that can be adapted to 
numerous applications in the biomedical field, thus expanding the scope and influence of this 
work.  The development of libraries of components to represent physical system and sensory 
network elements would aid in the efficient development of new devices and the adaptation of 
existing devices to new application areas.  Additionally, formal platforms capable of integrating 
such libraries with models of the stochastic biological components enable full-system modeling 
that can effectively aid efficient and proper design, validation, and verification of biomedical 
systems.  Implementation of such a platform using existing systems languages such as UML and 
SysML takes advantage of the mature properties of these tools, where implementing extensions 
to other modeling domains is a well-established practice.  A tool for the succinct mathematical 
modeling of stochastic biomedical components would be such an extension of this platform.   
 

Mathematical Modeling of Biological Systems 
 

To effectively predict the operation of biomedical devices, models that efficiently and accurately 
predict the operation of the biological component of the system are vital.  These models must be 
able to simulate the development of the biological system with time, as well as predict changes 
of the biological system due to experimental conditions.  In doing so, these models can then be 
integrated with higher-level models of the overall experimental biomedical system to complete 
the platform architecture.  While a number of modeling methods exist for biomedical systems 
that differ in their modularity, method of implementation, and overall accuracy, we focus on one 
particular modeling method, Markov Chains or Hidden Markov Models, as a particularly suitable 
method for biomedical device applications (Kim 2002, Rabiner 1986, Tomlin 2007).  
 
Markov Chains and Hidden Markov Models.  Markov Chains and Hidden Markov Models 
provide a method of modeling probabilistic systems with finite states (Rabiner 1986).  While this 
method has existed for over a century, only recently have they begun to see significant use in 
engineering applications to understand the development of systems over time.  Additionally, they 
have seen use in a number of other fields to model and predict the development of highly 
stochastic biological and population schema in order to emulate and predict their function (Baldi 
1994, Durbin 2002, Kim 2002, Van Hulst 1978).  A Markov Chain model can be easily 
visualized as a set of states, each with a probability of propagation to a future state.  Figure 7 
shows how a simple Markov Chain may be easily visualized.   
 

 
 

Figure 7.  Markov Chain showing propagation between system states  
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Each state of the Markov Chain model represents a physical system state, with the arrows from 
each state showing the probability of propagation to another physical system state.  The sum of 
all propagation probabilities of each state must sum to 1.0, with feedback or steady-state 
operation between states also being possible.  Additionally, segmentation of Markov Chain 
models is permitted, where the probabilities of a state’s propagation may be dependent upon the 
current state of another related Markov Chain.  Such a technique is easily scalable and enables 
the effective modeling of highly complex systems in a manner that is intuitive, adaptable, and 
quick to implement or alter (Rabiner 1986).  Hidden Markov Models are an extension of the 
Markov Chain concept, where the Markov Chain or network of interacting Markov Chains are 
developed based on observed real-world performance.  Behavior of a system, be it discrete in 
nature or a continuous spectrum, is tracked and documented, and then a Markov Model is 
developed to fit this system performance.  This model then enables further analysis or prediction 
of future system functions (Rabiner 1986).  The fact that these models are emergent and based 
upon observed system performance makes them “hidden” to the model developer, since it is not 
initially clear what the system states may be or how these states are related.   
 
These characteristics make the use of Markov Chain models and Hidden Markov Models a 
preferred method for the representation of biological systems.  Highly complex biological 
phenomena have already been modeled with considerable success through the use of Markov 
Chains.  Kim, et. al. successfully developed a Markov model for the development of melanoma 
in patients where data was based upon the predictive relationships between 587 independent 
genes (Kim 2002).  By determining the factors of greatest importance to the development of the 
biological melanoma system, a Markov model describing ten interacting genes was produced 
that very nearly matched the real-world development of the system (steady state convergence of 
all states was higher than 0.05 significance level).  Since the development of a biological system 
such as melanoma is a continuous spectrum, physical states are lumped to collective state 
vectors, thus enabling a succinct analysis of the biology.  This same technique can be expanded 
to any number of other biological systems at varying levels of detail.  A medical researcher in the 
field may be interested in the physiological changes of a system at the molecular level, thus 
encouraging the development of a Markov model to emulate these processes in the context of a 
larger biological system.  Similarly, a practicing clinician may be more interested in overall 
patient response to a particular assay, thus encouraging the development of a Markov model to 
predict system response at a higher level of abstraction.   
 
In each case, such a technique is extremely valuable to a system designer attempting to develop 
biomedical devices for these varied applications.  Established techniques are generally available 
to provide biological system data in all but the most complex instances.  Systems biologists and 
medical researchers can utilize this data to formulate simplified models of the highly complex 
biological system that, in turn, become a valuable asset to the design engineer.  The intuitive 
nature of Markov models enables the engineer to not only design and simulate a system with 
stochastic biological components, but also to bridge the knowledge gap between complex 
biology and the engineering of complex biomedical devices (Tomlin 2007).  In doing so, the 
validation, verification, and potential redesign of a physical system for experimental biomedical 
applications can be optimized to a point that is not currently possible using established system 
modeling techniques.    

 



 9 

Implementation of Platforms for Experimental Biomedical Systems  
 

Utilizing the mechanisms available for the modeling of physical engineering systems and the 
techniques presented for the representation of biological systems using Markov models, a full 
platform for the engineering of experimental biomedical systems is achieved.  Borrowing from 
the high-level system architecture model in figures 5 and 6, this framework platform creates a 
union of the two system domains that enables the simulation of a full biomedical system.  Figure 
8 showcases how such a union is achieved, where the biological element is modeled as a 
component in the system architecture.   
 

 
 

Figure 8. Implementation of the platform for engineering of experimental biomedical 
device systems 

 
Modeling of the full system architecture is achievable using established systems modeling 
platforms, such as UML or SysML, since many of these have reached a level of maturity to 
support extensions to other languages and tools.  In order to utilize the platform for overall 
engineering of the biomedical system, the implementation process follows a straightforward path 
as follows:  
 

1. Gather relevant data of the biological system at the level of abstraction necessary for the 
application.  This data will be used to formulate a Markov model of the biological system 
component. 
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2. Formulate a Markov model of the biological component.  An iterative process is often 

used to achieve convergence of such a model, as well as to define the appropriate 
segmentation of finite states for continuous systems (Kim 2002, Rabiner 1986).  

 
3. Represent the validated Markov model using a tool that can integrate with the modeling 

platform used for the representation of the physical device system.   
 

4. Design the proposed physical device components and how these components relate using 
the modeling platform named in (3).  An additional component should also be 
represented in the system model that will extend to the biological component Markov 
model.   

 
5. Perform simulation, validation, and verification of the complete system model.  The 

results of these analyses will provide a means of redesign and device optimization for the 
particular experimental application.   

 
The outputs generated from this system analysis will provide a range of potential experiment 
outputs based on the operation of the physical system and the stochastic biological system.  The 
value of obtaining such a resultant set is paramount to the design engineer, as it allows them to 
directly address real-world concerns that would not otherwise be possible in the design phase.  In 
the prototyping phase of device development and beyond, this same analysis can be used to 
verify proper device operation, to confirm the results of experiments, and to detect and avoid 
undesirable system performance.  Such analyses are currently difficult and exceedingly time-
consuming using established methods, giving a platform for experimental biomedical device 
development considerable value to the entire medical field.   
 

Medical Drug Screening for Antibiotic Development 
 

This section presents a prototype application of the presented platform for engineering 
experimental biomedical systems.  Medical drug screening for the development of new 
pharmaceutical drugs is a major area of concentration in the biomedical field.  In order to 
develop methods of high-throughput screening for prospective antibiotics for treatment of 
bacterial infections, a microsystem was developed that is capable of arraying of experiments and 
non-invasive sensing.   
 
The developed system contains all of the architectural components mentioned previously in this 
paper for experimental biomedical devices.  A microfluidic platform provides a physical system 
module capable of containing the biological system.  Additionally, a sensor network external to 
this microfluidic device enables continuous monitoring of bacterial development, where the 
cumulative outputs of the system can have a range of possibilities depending upon the stochastic 
biological system that the device is intended to analyze.  Such architecture makes this application 
an ideal candidate for the use of the proposed platform, since reliance on the biological 
component makes system performance difficult to predict. 
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The device itself is comprised of a microfluidic channel that is used to grow bacterial biofilms 
under controlled conditions.  The biofilms are then treated with the candidate drugs in order to 
determine their levels of efficacy in depleting the bacterial films.  Bacterial cultures, growth 
media, and the candidate antibiotics are supplied to the device via interface tubing, which allows 
for controlled system flow rates via an external syringe pump.  Sensing of bacterial growth is 
achieved through optical density detection.  As biofilm grows, it becomes increasingly absorbent 
to incident light (optically dense).  Thus, biofilm growth can be monitored by tracking the 
amount of light transmitted through a biofilm sample.  Sensing of this transmission is achieved 
via an array of photopixels placed underneath of the microfluidic growth chamber, where the 
analog voltage outputs of the pixels are inversely proportional to the biofilm optical density at 
that point.  The advantage of this sensing mechanism is that it provides a means of non-invasive 
and continuous detection of biofilm growth that is otherwise difficult to obtain (Meyer 2011).  
Additional study of the biofilm is achievable through end-point measurements of density and 
morphology through the use of confocal microscopy.  Figure 9 provides an overview of this 
architecture with the components of the system highlighted through images of the prototyped 
devices.   
 

 
   

Figure 9. Bacterial imaging is performed using confocal microscopy and the 
microfluidic device is fabricated using soft lithography in polydimethylsiloxane 

(PDMS).  The sensors are charge-coupled devices with 128x1 pixel arrays  
 

To enable the formal validation and verification of this biomedical system, a Markov model of 
the bacterial biofilm component is developed.  The current high-level model of the biofilm 
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development process is implemented through the use of the tool presented by Yang.  The 
software package enables the specification of a network of interacting Markov Chains, referred 
to as Markov Chain Cells in this paper, and of simulating the interactions of these Cells in order 
to investigate target characteristics of the network.  Through reduction techniques utilizing 
symmetry in the Markov Chain network, highly complex models can be analyzed that would 
otherwise go beyond the computational capacity of most systems (Yang 2011).   
 
The Markov Chain network used to describe this system is comprised of two distinct domains: 
the physical conditions of the experiment that affect the bacterial biofilm, and Markov Cells to 
describe the biofilm structure.  Biofilm Markov Cells represent discrete sections of the film 
within the microfluidic chamber, where the state of each Cell is dependent upon the states of 
adjacent Cells as well as the states of the experimental conditions.  Figure 10 shows the 
abstraction of the bacterial biofilm system as it is currently implemented, and follows directly 
from the architecture presented in figure 3.  As this Markov model continues to mature, a clear 
path is to expand the model to a generalized two-dimensional biofilm with a suite of influencing 
experimental factors.  Such advancements will permit the model’s use in any number of design 
processes for biomedical devices intended for biofilm applications.  
 

 
 

Figure 10. Visual representation of the biofilm Markov model implementation 
 
An N-Cell biofilm was modeled with two key experimental condition variables: nutrient 
concentration in the system growth media and damaging shear stress due to fluid flow around the 
film.  Each of these condition variables was provided binary values, and the biofilm elements 
were simplified to a system of three distinct states.  The next-iteration state of each biofilm 
element is dependent upon its own Cell’s current state, the current states of its adjacent Cells, 
and the current states of the experimental conditions.  Overall, the number of possible states for 
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the biofilm model was found to be X = 2*2*3N according to Bayesian statistics (Yang 2011).  
Through the symmetry reduction methods, the system simulation was condensed from this set of 
possible states to a model with 0.75*X number of states, an overall 25% decrease in system 
complexity.  By establishing an observer in the tool to track the number of biofilm Cells in 
various developmental stages, a full spectrum of theoretical biofilm growth characteristics is 
obtained that agrees with intuitive expectations (i.e. a near Gaussian profile).  Future 
improvements to this model and its implementation in the simulation tool are expected to reduce 
this model even further, as previous implementations of its symmetric reduction principles have 
achieved orders-of-magnitude reduction in system size (Yang 2011).     
 

Conclusions and Future Work 
 

Conclusions. A platform for the design, validation, and verification of biomedical devices for 
experimental applications has been presented in this paper.  The importance of this work stems 
from the current limitations of system modeling and analysis methods to consider systems with 
highly stochastic biological components.  As a result, design engineers are incapable of 
developing ideal systems that properly address the device requirements of medical researchers 
and clinicians in the field.  The effects of current limitations are further compounded by the 
knowledge disconnect that exists between biologists and engineers as a result of these 
shortcomings, since a lack of intuitive understanding of the biological component on the part of 
the engineer hinders proper system development.  Here we have shown that the implementation 
of a platform for engineering experimental biomedical systems can bridge this gap and ensure 
more successful system design.  By utilizing Markov Chain models to represent biological 
systems and extending these models to those of device components in established languages such 
as UML or SysML, an overall biomedical system model is achievable.  A key benefit of this 
method is the enablement of formal system-level validation and verification of biomedical 
systems for experimental applications.   
 
Future Work.  In this paper, we define a revolutionary framework for the design and 
validation/verification of biomedical systems for highly stochastic experimental applications.  To 
bring the benefits of such a platform to fruition, further work must explore methods to integrate 
tools for modeling biological systems with well-established modeling languages.  Moving 
forward, such an architecture lays the foundation for a collaborative effort between biologists, 
clinicians, and systems engineers.  Libraries of biological and device-oriented components 
achieved through this collaborative effort can be used in a broad number of application areas to 
develop new experimental systems for these disciplines.     
 

References 
 
Baldi, P., Chauvin, Y., Hunkapiller, T., McClure, M. A. “Hidden Markov Models of Biological 

Primary Sequence Information.” PNAS 91 (3): 1059-1063.    
Beck, J. R. 1983. “The Markov Process in Medical Prognosis.” Medical Decision Making 4 (3): 

419-458.   
Csete, M. E., and Doyle, J. C. 2002. “Reverse Engineering of Biological Complexity.” Science 

295: 1664-1669.   



 14 

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. 2002. Biological Sequence Analysis: 
Probabilistic Models of Proteins and Nucleic Acids, 46 – 159. Cambridge (UK): 
Cambridge.   

Endy, D. 2005. “Foundations for Engineering Biology.” Nature 438 (24): 449-453.   
Janakiraman, V., Englert, D., Jayaraman, A., and Baskaran, H. 2009. “Modeling Growth and 

Quorum Sensing in Biofilms Grown in Microfluidic Chambers.” Annals of Biomedical 
Engineering 37 (6): 1206-1216.   

Kim, S., Li, H., Dougherty, E. R., Cao, N., Chen, Y., Bittner, M., Suh, E. B. 2002. “Can Markov 
Chain Models Mimic Biological Regulation?” Journal of Biological Systems 10 (4): 337-
357.   

Meyer, M. T., Roy, V., Bentley, W. E., and Ghodssi, R. 2011. “Development and Validation of a 
Microfluidic Reactor for Biofilm Monitoring Via Optical Methods.” Journal of 
Micromechanics and Microengineering 10: 1-10.   

Oltvai, Z. N., and Barabasi, A. L. 2002.  “Systems Biology.  Life’s Complexity Pyramid.” 
Science 298: 763-764.    

Potera, C. 1999. “Microbiology – Forging a Link Between Biofims and Disease.” Science 283: 
1837-1839.   

Rabiner, L. R., Juang, B. H. 1986. “An Introduction to Hidden Markov Models.” IEEE 
Acoustics, Speech, and Signal Processing 3 (1): 4-16.   

Richards, J. J., and Melander, C. 2009. “Controlling Bacterial Biofilms.” Chemistry and 
Biochemistry 10: 2287-2294.   

Tomlin, C. J., and Axelrod, J. D. 2005. “Understanding Biology by Reverse Engineering the 
Control.”  PNAS 102 (12): 4219-4220.   

Tomlin, C. J., and Axelrod, J. D. 2007. “Biology by Numbers: Mathematical Modelling in 
Developmental Biology.” Nature Reviews; Genetics 8: 331-340.   

Van Hulst, R. 1978. “On the Dynamics of Vegetation: Markov Chains as Models of Succession.” 
Theory and Models in Vegetation Science 40 (1): 3-14.   

Yang, S., Zhou, Y., Baras, J. 2011. “Compositional Analysis of Dynamic Bayesian Networks 
and Applications to CPS.” Paper submitted to the Third International Conference on 
Cyber-Physical Systems, Beijing, China, 17-19 August 2012. [Submitted] 

 
 

Biography 
 

Matthew Mosteller is a graduate student in Systems Engineering at the Institute for Systems 
Research at the University of Maryland, College Park.  He has a Bachelors degree in Electrical 
Engineering from the University of Maryland, College Park.   
 
Mark Austin is an Associate Professor in the Department of Civil and Environmental 
Engineering, University of Maryland, College Park.  He currently holds an affiliate appointment 
with the Institute for Systems Research.  During the past ten years, Mark has taught extensively 
in the Master of Science in Systems Engineering (MSSE) program, and conducted short courses 
in Systems Engineering at US companies, and in Europe and South America.  He has a 
Bachelors degree in Civil Engineering from the University of Canterbury, New Zealand, and 
Masters and Ph.D. degrees in Civil Engineering from UC Berkeley.   
 



 15 

Reza Ghodssi is the Herbert Rabin Distinguished Professor, Director of the Institute for Systems 
Research (ISR), and Director of the MEMS Sensors and Actuators Lab (MSAL) in the 
Department of Electrical and Computer Engineering (ECE) at the University of Maryland.  His 
research interests are in the design and development of microfabrication technologies and their 
applications to micro/nano devices and systems for chemical and biological sensing, small-scale 
energy conversion and harvesting.  He has a Bachelors, Masters, and Ph.D. in Electrical 
Engineering from the University of Wiscosin – Madison.   

 
Shah-An Yang is a post-doctoral associate in Systems Engineering at the Institute for Systems 
Research at the University of Maryland, College Park.  He has a Bachelors degree in Electrical 
Engineering and a Ph.D. in Electrical Engineering from the University of Maryland, College 
Park.   
 
 
 
 

 

 


