
Modeling and Cross-Domain Dependability Analysis
of Cyber-Physical Systems

Mark R. Blackburn,
Research Professor,

Stevens Institute of Technology,
Hoboken, NJ 07030, USA

E-mail: mblackbu@stevens.edu

Mark A. Austin,
Deparment of Civil Engineering,

University of Maryland,
College Park, MD 20742, USA

E-mail: austin@isr.umd.edu

Maria Coelho,
Ph.D. Candidate in Civil Systems,
Department of Civil Engineering,

University of Maryland,
College Park, MD 20742, USA
E-mail: memc30@hotmail.com

Abstract—This paper discusses a novel method of modeling
and formal verification to support dependability analyses. The
method is demonstrated in an example of a fault management
capability of robots that interacts with equipment and humans.
Hazard analyses produce derived requirements for fault
management capabilities. These include safety critical
functions for collision avoidance and temporary autonomy.
Derived requirements are represented formally in models that
are used to produce dependability evidence using theorem
proving, model- based test vector generation, test execution
with code coverage analysis, and requirement-to-test
traceability. To address the challenges of heterogeneity of
modeling tools and languages, Semantic Web Technologies
are used for model composition and model transformation
from modeling tools to formal analysis tools.

Keywords—component, formatting, style, styling, insert (key
words) formal methods, modeling, formal verification,
dependability, fault management, cyber physical systems.

I. INTRODUCTION

 Robotic systems used in advanced manufacturing, are cyber

physical systems (CPS), providing competitive advantage to

manufacturers [1]. Such robots interact with other

manufacturing equipment and with humans, and could pose

risk to both. System requirements for these robots, therefore,

must include nonfunctional dependability requirements for

failsafe operation such as: safety, security, reliability, and

availability [2]. These requirements are derived from fault and

hazard analyses. CPS are smart, networked systems with

embedded sensors, computer processors, and actuators that

sense and interact with the physical world in real-time [3].

CPS systems are heterogeneous in design, and oftentimes

provide critical services, work with unreliable networks and

provide spatial mobility [4]. Due to dependability

requirements on CPS, they often possess fault

management

capabilities that rely on software monitoring using various

sensors, as well as control of actuators to help avoid mishaps.

Dependability is a cross-cutting system property. For many

years it has been known that the processes used to ensure

dependable systems are costly and that these costs increase

with the size and complexity of the CPS [5]. Verification is a

key element of this cost. NASA, for example, presented

industry data indicating that verification is 88 percent of the

cost to produce aircraft software meeting DO-178B [6] level A

criteria (i.e., safety critical systems), and 75 percent of the cost

of meeting level B criteria [7]. Further, the National Institute

of Standards and Technology (NIST) Foundations for

Innovation in Cyber-Physical Systems report [1] identifies 21

barriers and challenges for CPS dependability (i.e., reliability,

safety, and security). Some of the high priority challenges

include: 1) the need for increasing coverage of verification and

validation (V&V) while reducing costs, 2) coping with

complexity and scale of systems when performing V&V, and

3) the inability to apply formal methods at appropriate

abstraction levels, especially for a typical engineer. A similar

report from the European ARTEMIS Research agenda cited

similar needs [8].

Oftentimes, significant manual effort and expertise have

been required to verify safety-critical software. Formal

methods, providing a more automatic means of verification,

hold promise. However, despite advances made in theorem

provers and model checkers aimed to support verification,

challenges remain in making their use practical [1][9]. Some

of the most cost-effective approaches use formal models to

prove satisfiability, verify safety properties, and, as a side-

effect, produce test vectors that include inputs and expected

outputs to be used in testing the target software. The use of

these, however, has been limited to specific modeling

languages and tools [10]. Furthermore, while it is critically

important to have defect-free specifications, the actual

software implementation needs to be verified in its operational

23978-1-5386-3664-0/18/$31.00 ©2018 IEEE

context. The Federal Aviation Administration (FAA), for

example, still requires software testing with code coverage

typically based on modified condition/decision coverage [11].

The goal of achieving dependability is further complicated

because the task of engineering CPS is inherently multi-

disciplinary, typically involving the integration of mechanical,

electrical, thermal, software control, networks, reliability,

safety, and cost, among others. The specification of CPS

systems is distributed across models defined in these various

viewpoints. Several challenges emerge. First, there may be

“common sense” assumptions about dependability that are not

explicitly characterized in any of these models. Second, in the

process of creating analytical models, the modeler may,

inadvertently or out of practical necessity, introduce

constraints that are inconsistent with assertions made by

models representing other viewpoints. Recognizing these

inconsistencies across viewpoints can be a challenge [12].

Third, there is heterogeneity itself; a DARPA research project

[13] cited challenges arising due to the diversity of domain

engineering tools, and the span of design flow activities

essential for the design of complex CPS. Fourth, tracing

requirements through the various levels of abstraction and

models is a challenge.

This paper discusses methods, models and tools to address

some of these challenges. While the paper discusses these

challenges in the context of the dependability analysis of a

telepresence robot, the approach is generally applicable to

CPS. Section II discusses strategies and methods contributing

to CPS dependability analyses. Section III discusses a case

study and provides an overview of the hazard analysis that

produces derived requirements for the fault management

capability of a telepresence robot. Section IV discusses formal

verification of the fault management capabilities derived from

the hazard analysis. This includes detailed behavioral models,

model transformations to formal method tools supporting

satisfiability analysis, test vector generation, test driver

generation, test execution and results analysis, and code

coverage analysis. Section V discusses the use of semantic

web technologies (SWT) and topic maps to support cross-

domain analysis. Section VI provides a scenario for using

topic maps for composing requirements and formal models

prior to model transformation into a representation for formal

method tools. Section VII assesses the preliminary finds of the

method and prototype, and provides some metrics. Section

VIII provides some conclusions.

II. ACCESSING DEPENDABILITY FOR CPS

A survey on the state-of-the-art in industrial automation

cited strategies and methods that could contribute evidence of

dependability [9]. In particular, the survey cited model-based

engineering (MBE), formal methods, design patterns and

generative programming as promising. A broad survey across

industry, government and academia suggests that adoption of

model-centric engineering (MCE) is accelerating [14]. MCE

includes the discipline-specific design models typically

associated with MBE, as well as Model Based System

Engineering (MBSE) system models, models for “ilities,” and

models integrating software, hardware, surrogates and

humans-in-the-loop.

A trend in MCE is to use graphical domain-specific

modeling (DSM), where the underlying domain-specific

language (DSL) provides precise semantics. DSMs are often

more constrained than general purpose modeling languages

because they are targeted at specific viewpoints associated

with a specific domain and engineering disciplines. Further,

DSM environments often provide more dynamic capabilities

to support synthesis (e.g., code generation) and simulation.

Formal methods are fundamentally about proof, and

consequently are often supported by theorem provers [15],

model checkers [16] and Satisfiability Modulo Theory (SMT)

solvers. Behaviors in CPS often involve some type of motion

control, planning, and surveillance, which is modeled with

nonlinear functions and constraints. SMT solvers can check

hundreds of thousands of Boolean and integer clauses, but

may be unable to determine the satisfiability or unsatisfiability

of nonlinear formulas. While formal methods have

traditionally been applied to discrete models, CPS also relies

on continuous models used for dynamic systems. Certain

hybrid logics, such as differential dynamic logic, support

formal methods for continuous control systems [17]. Others

have extended deductive formal methods with inductive

machine learning capabilities [18].

While there are strong arguments for applying formal

methods to dependability analysis, Church’s Thesis shows that

there is no absolute validation criterion [19]. Further, it is

known that no amount of testing can guarantee a program’s

correctness. Even where formal methods have been applied to

system models, systems have failed to operate correctly in the

target environment [20]. Therefore, testing will play a role in

the V&V of CPS for some time to come. Surveys of strategies

to produce tests using model checkers [21] and SMT solvers

[22] found that their fault-finding effectiveness was limited,

primarily because the selected input values did not expose

faults in the software.

There are other research needs and approaches that can

contribute to more comprehensive dependability. Simulations

of continuous behavior can contribute to verification evidence,

but guaranteeing properties such as safety is challenging

because the space of possible simulations is so large [17].

Rajhans et al. cite a number of approaches towards multi-

model design and analysis of CPS, but notes that most are

problem-specific [23]. Their research investigates frameworks

to compose and reason about multiple types of models, where

the various model views of the underlying system use

structural and semantic mappings to ensure consistency and

enable system-level verification in hierarchy and composition.

Section V discusses a unique approach to address some of the

same objectives for using SWT for model transformations

[24], but the new approach uses topic maps for cross-domain

integrations of domain ontologies.

Ontology-based knowledge and reasoning frameworks are

being developed to support decision support for correct-by-

design of CPS [25]. NASA is using design patterns in an

extended MBSE framework that leverages an ontology to

24

verify compliance and avoid potential system engineering

issues [26]. Finally, so as to improve dependability, CPS are

increasingly designed to act autonomously. Toward this end, it

is common to use embedded runtime capabilities such as fault

management to ensure safe operation for both fault and failure

scenarios. These runtime capabilities are key to failsafe

operations, but they must be rigorously verified and validated.

III. CASE STUDY

The case study describes fault management capabilities for

two safety-critical scenarios of a telepresence robot. In these

scenarios, the telepresence robot provides services to an

enterprise that spans multiple locations. The robot is used by

various remote personnel to rapidly assess problems and make

recommendations to technicians on site [27]. The remote

operator uses wireless services to control the robot. However,

the robot must operate autonomously and safely if the wireless

connectivity is lost. In addition, the robot must be able to

autonomously avoid collisions with objects and human

regardless of the wireless connectivity. This section discusses

details that yield requirements for fault management

capabilities.

The case study is based on a four-course graduate series in

CPS [28]. In addition, four master projects extended two

prototypes using hazard analysis, fault tree analysis (FTA),

and failure modes and effects analysis (FMEA). These

established derived requirements for introducing combinations

of hardware and software for design, simulation,

implementation and model-based testing of the fault

management software.

Fig. 1. Integrated system engineering and hazard analysis processes derives
requirements that drive the fault management design and formal verification.

Fig. 1 is an activity diagram illustrating the relationship

between general systems engineering tasks and the tasks of

dependability analysis. Not depicted in the diagram are the

feedback loops between dependability analysis and systems

engineering. The partition on the left side of Fig. 1 represents

the activities that produce a SysML model of the telepresence

system starting from continuous development and refinement

of the customer needs, system and functional requirements,

logical architecture and ultimately detailed behavior

specification [29]. The final activity in the left partition relates

to the formal verification of the fault management capabilities,

which is discussed in Section IV.

Fig. 2 depicts a partial FTA for the system. The two

capabilities derived from the hazard analysis that are believed

to have the highest safety risk are:

Network Signal Failure: The robot’s wifi network

connection either loses signal strength or loses connection

with the Internet server altogether.

Collision Sensor Failure: Collision sensors fail to respond

to the object in a path; this may result in the collision of the

robot with that object.

Fig. 2. Partial fault tree analysis (FTA) example showing basic events and risk
mitigations [27].

The partition on the right side of Fig. 1 illustrates a top-

down approach to modeling dependability. It consists of

identifying mishaps, creating a hazard list, prioritizing system

failures, and performing fault tree analysis to identify the basic

events that could lead to a system failure. Concurrent with

design decisions in the left partition, there is an activity to

perform FMEA to assess the risk and impacts of components

that could be involved in fault or failure scenarios. These

analyses combine top-down FTA, with bottom-up FMEA, to

produce derived requirement that are integrated with existing

requirements. The results initiate activities to update use cases,

behaviors, and the product’s logical and physical design.

A metamodel for an FMEA is shown in Fig. 3. Starting with

the design of a component, FMEA attempts to quantify the

risks of failure of the component’s function, including the

effect and cause. The motivation for the FMEA is to design

25

controls to mitigate risks. A risk value (risk priority number,

RPN) is calculated based on the severity (S) of the failure,

probability (P) of occurrence, and detectability (D) prior to

failure (e.g., RPN = S x O x D). The fault management models

characterize both potential faults and failures relative to the

sensor inputs and system states, and specify controls for

motion control.

Fig. 3. Metamodel illustrates the conceptual elements involved in Failure
Modes and Effects Analysis (FMEA).

IV. MODEL-BASED FORMAL VERIFICATION

The hazard analysis produces derived requirements that

factor into the fault management design and implementation.

The SysML models discussed in Section III provide an

abstract representation of the system blocks, internal block and

their relationships. The behaviors represented in SysML

activity, sequence, and state diagrams are adequate to identify

the threads associated with the software control and data

flows, however those specifications are not sufficiently formal

to precisely model behaviors. Hence they are not sufficiently

formal to apply automated methods of verification. Therefore,

detailed behavioral models were created.

There are a few tools suitable to formally model and verify

fault management behaviors [10] [22]. Among those, the

standard language Modelica and the OpenModelica tool [30]

were chosen. Modelica is equation-based and object-oriented.

Modelica is acausal, meaning that the direction of information

flow between model components is not specified a priori.

Modelica is commonly used for modeling and simulating the

physical parts of a CPS to investigate properties of a possible

system designs. The continuous-time semantics of the models

are specified using differential-algebraic equations, which can

be further composed and connected into hierarchical model

structures. Modelica also supports hybrid models, combining

discrete and continuous-time semantics [31].

Modelica is integrated into the dependability analysis using

SWT. SWT includes standard languages such as the Web

Ontology Language (OWL) [32]. OWL provides a tool-

neutral means of specifying domain ontologies that map to

metamodels [33] of modeling and analysis tools. The

ontology-based approach uses a repository of linked graphs

where an ontology provides a semantically precise

conceptualization of a domain, but in a modeling tool-

independent way [34].

The prototype discussed herein uses SWT capabilities to

transform a Modelica model into a representation suitable to a

formal methods tool. An overview of the process that extends

Fig. 1 is shown in Fig. 4. The SysML model along with

derived requirements from the FTA and FMEA analyses were

used to develop Modelica models for the behaviors that are

implemented in the telepresence robot using Python. The SWT

prototype performs a transformation from Modelica to the

DSL of a toolset that performs satisfiability analysis, test

vector generation and test driver generation [10]. The

generated test driver wraps the implementation of the fault

management code and executes all of the test vectors. The test

driver captures the actual outputs, which are then compared

against the expected outputs produced by the test vector

generator. A Python code coverage tool [36] checks to

determine if the test vectors have fully exercised all code

statements and decisions. This was an iterative process both to

correct unsatisfiable constraints in the Modelica model, and to

improve the testability of the implementation to increase the

test coverage.

Fig. 4. Notional process flow for the modeling and analysis in the context of
triple store repository that includes ontologies and RDF linked through the
topic map, which integrates related element across different domains and
viewpoints.

Fig. 4 shows the interactions between modeling and

analysis activities and their underlying OWL representation in

the triple store, which is used to store and relate information as

Resource Description Framework (RDF) triples (i.e., subject,

predicate, object) [37]. The triples in the triple store can be

viewed from two perspectives: as OWL, the triples represent

an ontology, and reasoners can be used against the content to

ensure that it is well-formed. As RDF, the triples are structures

that can be used by SPARQL Protocol and RDF Query

26

Language (SPARQL) [38].

The left partition in Fig. 4 illustrates some of the modeling,

transformation and analysis functions as Call Behavior

Actions. Starting from the upper left of the figure,

OpenModelica is used to produce Modelica models for the

functions such as the wifi Signal Strength (wifiSS). The

Modelica models are imported into to the triple store through a

transformation into RDF that must be compliant with the

Modelica ontology. The specific elements (i.e., individuals in

OWL, and instances in RDF) are also linked into the topic

map as RDF to create the cross-domain associations, discussed

in Section V.

Model transformations such as OWL2Analysis directly use

the information in the triple store to produce transformed

representations into the DSL of the analysis tool. Satisfiability

analysis ensures that each thread of the model is satisfiable.

The transformed representation into the DSL of the analysis

tool is a first order logical formula represented in Disjunctive

Normal Form (DNF). The satisfiability analysis first proves

that the constraints (precondition) in each disjunct (logically

AND’d set of Boolean-valued conditions) have a non-null

input space, from which test inputs are selected and then those

inputs are used with the input-to-output relationship

(postcondition) to produce the expected outputs for the test.

The identification of any unsatisfiable thread is added to an

analysis graph and linked in the topic map in the triple store,

as discussed in Section V. For all satisfiable threads, a test

vector (inputs and expected outputs) is produced. The test

driver generator uses the test vectors to produce a Python test

driver that wraps the target code and then runs with code

coverage analysis.

V. CROSS-DOMAIN INTEGRATIONS USING TOPIC MAPS

Ensuring consistency across domains of a CPS contributes

evidence of dependability. A new and unique contribution of

the research is the use of SWT for cross-domain integration

that composes information from different viewpoints, and

their associated domain ontology, and then transforms the

composed information into representations suitable to other

tools. Related approaches [25] [35] for associating domain

ontologies that share common information, include: Merging:

Ontologies for similar domains are merged into one single

coherent ontology. Alignment: Complementary domains

ontologies are linked, resulting in two or more ontologies.

Integration: Ontologies from different domains are merged in

one single ontology.

The prototype discussed herein uses an approach that is a

hybrid of alignment and integration. The prototype relates

information across domain viewpoints using an ontology-

based representation of the Topic Map Data Model [39] [40].

Topic maps possess predefined properties to organize concepts

and occurrences into a hypergraph, including: names of

subjects, and occurrences and roles played in associations with

other topics; these are somewhat analogous to the concept of

using an index in a book to find specific topics that are located

in different contexts (sections) within the book. Topic maps

were designed to ease merging, and to support interoperability

of ontologies. The rationale for using an ontology-based

formalization of topics maps is to leverage the SWT for

querying and automated reasoning using the hybrid approach

to alignment and integration.

The TopicMapManager, shown in Fig. 4 is a tool that

allows users to select elements from different graphs in the

triple store or other linked repositories. The key concepts of

topic maps include: Topics, Associations, and Occurrences.

Topics correspond to the subject or object of an RDF triple.

An occurrence is a link to an element in another ontology or to

an external resource denoted by an Internationalized Resource

Identifiers (IRI). An association is a relationship between two

or more topics. This allows subjects to be related, even if they

have different names in different viewpoints (through the use

of a name variant). This addresses the common problem in

integration scenarios where the same logical element has

different names in different viewpoints.

Some aspects of the topic map concept are formalized here

to describe a problem to be resolved with topic maps. As

reflected in (1) below, for most CPS there are a set of domain

viewpoints (DV) (e.g., network, electrical, software control)

that are defined in terms of a metamodel (MM) for each domain

viewpoint and an associated application model (AM) (e.g., wifi

Modelica model), where the AMi conforms to the MMi. For

each domain viewpoint there is a mapping to an ontology

namespace (NS), ontology (O), and set of instances (I) (e.g.,

RDF triples, subject-predicate-object) that must conform to

the ontology ODVi in the context of the namespace NSDVi.

NSDVi is actually a set of namespaces used in the context of the

ontology, where the default context is the union of the

elements. This is inherently represented as a graph (G) Gi in

the triple store repository.

DVi: {MMDVi, AMDVi} → Gi: {NSDVi, ODVi, IDVi} (1)

Any NSj contains a set of namespace prefixes that when

used to characterize information in the triples Ij must conform

to Oj an OWL ontology. As reflected in (2) below, a

transformation (t) tDVi in the context of a namespace,

ontology, and instances using SWT SPARQL queries, rules

and inferencing produces information in the form of

application models AMj that conforms to the MMj of the DVi of

the analytical function aj (e.g., satisfiability analysis). An

example of this mapping is the OWL2Analysis

transformation, shown in Fig. 4.

tDVi(NSDVi, ODVi, IDVi, AKDVi) → aj(DVi) ∧ i ≠ j (2)

Note, that while it is convenient and possibly more elegant

to use rules and inferencing to support aspects of a model

transformation, doing so hides the details. In contrast, the use

of SPARQL queries to accomplish the model transformations

makes the actual details of the transformation more explicit,

reviewable and testable. For example, the SPARQL queries

can be run against a repository as a form of testing using a

web browser.

In the process of composing information for a cross-domain

analysis, the only elements of the component viewpoints

27

queried are those relevant to the composed analysis. Each

topic in a topic map has subject identifiers, which are used in

merging of topics for cross-domain analysis. This provides a

cross-domain linking capability. Assume (3) that there is a set

of graphs Gn where n > 2. Assume, that there is a special graph

GTM that is defined by the namespace for the topic map (NSTM),

ontology for the topic map (OTM) and a set of instances ITM.

GTM: {NSTM, OTM, ITM} (3)

As formalized in (4), there exists a topic map defined by the

named individuals ITMk in GTM, and for each subject (s) for all

triples (tr) trk in every Gi ≠ GTM for all i ≤ n, if and only

if those subjects (s) and objects (o) are related by a

predicate (p), and p is in the set of topic map-relevant

predicates (P). The set ITM can be populated using SWT

rules.

GTM: {NSTM, OTM, ITM} ∋

[ITMk = x: {x |s ∨ o} ⇔ ∀k in trk(s,p,o) ∧ p

∈ P ∧ ∀i [i ≤ n ∧ Ii ≠ ITM]] (4)

There were few resources that use Modelica and SWT [41].

Therefore, integrating Modelica into the prototype

(Modelica2OWL in Fig. 4) required the development of a

Modelica ontology and an RDF model export capability from

OpenModelica. The Open Modelica Grammar developed in

ANTLR [42] provided the basis to parse the Open Modelica

files into an Abstract Syntax Tree (AST), which provided the

needed capabilities to parse and create a RDF representation

from OpenModelica. The generality of the Modelica language,

the low-level of information provide by the AST, and the

object-oriented nature of Modelica allowed information to be

represented in RDF at a various level of granularity (e.g.,

Model, Block, Equations, Expression).

The current prototype is configured to automatically

populate topic map individuals for a subset of predicates

rdf:type when the object is modelica:Block. The

individual Associations candidates are inferred by name

association, but can be user-specified. This allows information

from different ontologies to be composed with Modelica at the

Block level. Modelica blocks contain variable definitions as

well as equations. If the topic map is configured to include

objects of the type modelica:Equations this would

permit information to be composed from different domains at

the Equation level. This approach provides a way to have

composition at various levels of granularity. An example is

discussed in Section VI in the context of linking requirements

to Modelica blocks and generated test vectors.

VI. REQUIREMENTS AND TRACEABILITY

Requirement-to-test traceability is another useful, and

sometimes required [6] [11], criteria for assessing

completeness, and for tracing derived requirements from

various levels of abstraction and fidelity to tests. The tool

supporting test vector generation [10] has a built-in

requirement management capability that allows requirement

statements to be linked at the block level or to low-level

statements (i.e., pre-condition, post-condition). The

requirement is also linked to the generated test vector as

shown in. The requirements for the telepresence robot were

captured as SysML requirement blocks, but there was no

direct way to link them to the Modelica model.

The prototype includes a RequirementManager as shown in

Fig. 4 that is associated with a requirements ontology derived

from a goal-driven approach to requirements engineering [43].

Requirements associated with the fault management capability

were added as RDF instances associated with the requirement

ontology. The TopicMapManager was used to associate those

requirements with blocks from the Modelica model. The

OWL2Analysis tool has an option to use associations, such as

requirements, defined in the topic map to be included during

the model transformation process. This provides a means to

link requirement to transformed Modelica blocks in the DSL

of the analysis and test vector generation tool. An example of

the namespace PREFIX and SPARQL query for getting a

requirement linked through the topic map is shown below in

equation (5). This query finds all of the requirement

associations for the elements in the topic map that has the role

of a source (e.g., Modelica block) that is currently being

processed. The variables ?association, ?role, and

?playedBy are returned by the query, for the

modelica:Block f_triggerMode. An example of two

of the 18 test vectors with linked requirements is shown in

Fig. 6. While the MCE study [14] suggests that there will be

increased use of formal models, it is likely that subject matter

experts from various discipliens will still use high-level

requirements or constraints that need to be traced to the

detailed models. The integration of a requirement ontology

with the topic map provides a means to compose information

and transform viewpoints into one or more analytical models

to provide the needed V&V evidence.

VII. METHOD ASSESSMENT AND METRICS

The process undertaken by the students demonstrated that in

one semester, masters-level students could perform

comprehensive dependability analysis spanning the entire

systems engineering life cycle. The process starting from the

hazard analysis was iterative in nature. In addition, the

development of the fault management modeling and analysis

was also iterative, both in learning the tools and methods, but

also in using the formal analysis to improve jointly the

testability of the design and its implementation. There were

numerous satisfiability issues (i.e., contradictions in the

model) detected as the model and implementation were

evolved.

Design-for-testability has been a key tenet in hardware

design for many years, but it is not so well followed in

software. The initial fault management software was not

implemented in a manner that allowed the generated tests to

achieve a high degree of code coverage; it was re-factored

several times. Each modification to the design often resulted

in small modifications to the detailed behavior model and the

implementation. When the test results ultimately showed that

28

the actual values from the implementation matched the

expected values for all test vectors, a Python code coverage

tool was used to verify the completeness. This is depicted in

Fig. 5. The gaps in code coverage are due to code that directly

received input socket connections or interactions with the

hardware that could not be easily simulated. These types of

checks were verified by physical testing under combinations

of conditions where collision avoidance scenarios were

introduced and the wifi signal was lost. The current prototype

for performing OWL2Analysis transformations places some

idiosyncratic constraints on the formulation of the Modelica

model. Some of these constraints may disappear as the

prototype matures. Some appear necessary to leverage

automated capabilities from formal analysis to code generation

tools. Modeling guidelines may be needed to best leverage

tool capabilities [13].

Fig. 5. Code Coverage Metrics

Model and requirements engineering (RE) are inherently

interactive. Inconsistencies, satisfiability issues, and coverage

deficiency (issues) are added to another part of the analysis

ontology and linked to the topic map. Future work will extend

this information to use “issue” management as a means to

drive a system effort to completion. This applies to RE, which

is inherently a process for moving from goals to precise

statements, but in this process the requirements can be

inherently incomplete and inconsistent. Ontologies provide a

means for inferring information that can be used to move from

incomplete to complete requirements [43]. Ontologies provide

a means to continuously check for, and manage both

incompleteness and inconsistencies, and this can provide to

new types of objective measures. Such an approach can also

be stochastic where modeling patterns are applied to assess

likelihood of inconsistencies in models [12].

VIII. CONCLUSION

This paper has discussed models, methods and tools

required to achieve dependability in CPS. Specifically,

dependability builds on techniques for hazard analysis such as

fault tree analysis to identify the basic events that could lead to

a mishap. After design of the various subsystems and

component, FMEA is needed in order to target where best to

apply monitors and controls that would address fault and

failure modes. Models supporting these fault management

capabilities need to be carefully designed and analyzed. The

resulting implementations should be rigorously verified to

ensure that the monitoring and control capabilities work

flawlessly. This paper describes novel use of tool-neutral

SWT and topic maps as a means to integrate models for cross-

domain dependability analysis using formal verification tools.

The SWT infrastructure relates information in a semantically

precise way so as to improve semantic consistency across

domains and viewpoints. This should strengthen the

dependability argument for CPS in which the tool is applied.

REFERENCES

[1] National Institute of Standards and Technology, Foundations for
Innovation in Cyber-Physical Systems, Workshop Report, 2013.

[2] Laprie, J.C., “Dependability Evaluation of Software Systems in
Operation.” IEEE Transactions on Software Engineering SE-10 (1984):
701-714.

[3] National Academy of Science Interim Report on Cyber-Physical
Systems Education, 2015.

[4] R. A. Baheti & H. Gill, 2011, Cyber-physical Systems, The Impact of
Control Technology, T. Samad and A.M. Annaswamy (eds.), Accessed
from: www.ieeecss.org.

[5] G. E., Stark, Technologies for Improving the Dependability of Software-
Intensive Systems: A Review of NASA Experience and Needs. Houston,
Texas: The Mitre Corporation, 1994.

[6] RTCA, DO-178B/ED-12B - Software Considerations in Airborne
Systems and Equipment Certification, Radio Technical Corporation for
Aeronautics Special Committee 167 (RTCA)
December, 1992.

[7] G. Brat, V & V of Flight-Critical Systems, Safe & Secure Systems &
Software Symposium, June 2010.

[8] ARTEMIS-GB-2012-D.46 – Annex 2, 2013.

https://ec.europa.eu/research/participants/portal/desktop/en/oppo
rtunities/fp7/calls/artemis-2013-1.html.

[9] V. Vyatkin, Software Engineering in Industrial Automation: State-of-
the-Art Review. IEEE Transactions on Industrial Informatics 9, no. 3
(August 2013): 1234–49. doi:10.1109/TII.2013.2258165.

[10] M. R. Blackburn, M., R. Busser, A. Nauman, and T. Morgan. “Life
Cycle Integration Use of Model-Based Testing Tools,” 2:10.D.4–1 –
10.D.4–13. IEEE, 2005.

[11] RTCA, DO-178C - Software Considerations in Airborne Systems and
Equipment �Certification, Radio Technical Corporation for Aeronautic
2011.

[12] S. J. I. Herzig, A. Qamar, and C. J. J. Paredis, “An Approach to
Identifying Inconsistencies in Model-based Systems Engineering,”
Procedia Computer Science, vol. 28, pp. 354–362, 2014.

[13] T. Bapty, S. Neema, J. Scott, Overview of the META Toolchain in the
Adaptive Vehicle Make Program, Vanderbilt, ISIS-15-103, 2015.

[14] M. A. Bone, M. R. Blackburn, G. Witus, R. Cloutier, E. Hole, Model-
Centric Engineering, Conference on Systems Engineering Research,
March 2016.

[15] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in 11th International Conference on Au- tomated Deduction
(CADE), ser. Lecture Notes in Artificial Intelligence, D. Kapur, Ed., vol.
607. Springer-Verlag, June 1992, pp. 748–752.

[16] E. M. Clarke and E. A. Emerson, “Design and synthesis of
synchronization skeletons using branching-time temporal logic,” in
Logic of Programs, 1981, pp. 52–71.

[17] S. Mitsch, J.-D. Quesel, and A. Platzer, “Refactoring, Refinement, and
Reasoning,” in FM 2014: Formal Methods, vol. 8442, C. Jones, P.
Pihlajasaari, and J. Sun, Eds. Cham: Springer International Publishing,
2014, pp. 481–496.

[18] S. A. Seshia. New Frontiers in Formal Methods: Learning, Cyber-
Physical Systems, Education, and Beyond. CSI Journal of Computing,
2(4):R1:3–R1:13, June 2015.

[19] Mili, A., An Introduction to Formal Program Verification, New York,
New York: Van Nostrand Reinhold, 1985.

[20] S. Mitra, T. Wongpiromsarn, and R. M. Murray, “Verifying Cyber-
Physical Interactions in Safety-Critical Systems,” IEEE Security &
Privacy, vol. 11, no. 4, pp. 28–37, Jul. 2013.

29

[21] G. Fraser, F. Wotawa, P.E. Ammann, Testing with model checkers: a
survey, Software Testing, Verification and Reliability, Volume 19, Issue
3, pages 215–261, September 2009.

[22] M. R. Blackburn, S. Ray. Reducing Verification Costs through Practical
Formal Methods: A Survey, System and Software Consortium Technical
Report, 2011.

[23] A. Rajhans, A. Bhave, I. Ruchkin, B. H. Krogh, D. Garlan, A. Platzer,
and B. Schmerl, “Supporting Heterogeneity in Cyber-Physical Systems
Architectures,” IEEE Transactions on Automatic Control, vol. 59, no.
12, pp. 3178–3193, Dec. 2014.

[24] M. R. Blackburn and P. O. Denno, “Using Semantic Web Technologies
to Integrate Models to Analytical Tools,” International Conference on
Complex Systems Engineering (ICCSE), 2015.

[25] L. Petnga and M.A. Austin, “An Ontological Framework for Knowledge
Modeling and Decision Support in Cyber-Physical Systems,” Advanced
Engineering Informatics, vol. 30, no. 1, pp. 77–94, Jan. 2016.

[26] Jenkins, J. S., N. F. Rouquette, Semantically-rigorous systems
engineering modeling using SysML and OWL, Jet Propulsion
Laboratory, California Institute of Technology, 2012.

[27] A. Atherton, Dolen, C., Hernandez, E., Romano, N., Cyber Physical
Systems Final Report, TBD Robotics Presents: The Dopplebot System
Model Document, <blind affiliation>, July 2015.

[28] <blind authors>, Project-Based Education for the Systems Engineering
of Cyber-Physical Systems, 2016 Conference on Systems Engineering
Research, March 2016.

[29] J. Broadbent, W. Diaz, T. Patalano, Cyber Physical Systems Final
Report, TrueVisit System Model Document, <blind affiliation>, July
2015.

[30] OpenModelica, https://www.openmodelica.org/.
[31] Broman, David, Edward A. Lee, Stavros Tripakis, and Martin Törngren.

“Viewpoints, Formalisms, Languages, and Tools for Cyber-Physical
Systems,” 49–54. ACM Press, 2012. doi:10.1145/2508443.2508452.

[32] World Wide Web Consortium. OWL 2 Web Ontology Language
Document Overview, December 2012. http://www.w3.org/TR/owl2-
overview/.

[33] Walter, Tobias, Fernando Silva Parreiras, and Steffen Staab. “An
Ontology-Based Framework for Domain-Specific Modeling.” Software
& Systems Modeling 13, no. 1 (February 2014): 83–108.

[34] Grüninger, M., Joseph Kopena: Semantic Integration through Invariants.
AI Magazine 26(1): 11-20, 2005.

[35] F. Song, G. Zacharewicz, and D. Chen, “An ontology-driven framework
towards building enterprise semantic information layer,” Advanced
Engineering Informatics, vol. 27, no. 1, pp. 38–50, Jan. 2013.

[36] https://wiki.python.org/moin/CodeCoverage.

[37] RDF – Resource Description Framework (RDF): Concepts and Abstract
Syntax, W3C Recommendation, February 2014,
https://www.w3.org/TR/rdf11-concepts/.

[38] World Wide Web Consortium. SPARQL 1.1 Overview, March 2013,
http://www.w3.org/TR/sparql11-overview/.

[39] ISO/IEC 13250-2: Topic Maps – Data Model, 2005-12-16.
[40] Cregan, A.: Building Topic Maps in OWL DL. In: Proceedings of the

Extreme Markup Languages® 2005 Conference, Montreal, Canada, pp.
1–29, 2005.

[41] P. A. Fritzson, Introduction to modeling and simulation of technical and
physical systems with Modelica. Hoboken, N.J: Wileyௗ: IEEE Press,
2011.

[42] ANTLR (ANother Tool for Language Recognition),
http://www.antlr.org/.

[43] K. Siegemund, E. J Thomas, Y. Zhao, J. Pan, and U. Assmann. Towards
ontology-driven requirements engineering. In Workshop Semantic Web
Enabled Software Engineering at 10th International Semantic Web
Conference (ISWC), Bonn, 2011.

Mark R. Blackburn (M’2011) holds a Ph.D. from George Mason University
in Information Technology, M.S. in Mathematics (emphasis in C.S.) from
Florida Atlantic University, and a B.S. in Mathematics (C.S. option) Arizona
State University. He is an Associate Professor in the School of Systems and
Enterprise from Stevens Institute of Technology. Dr. Blackburn research
focuses on methods, models, visualization and automated tools for reasoning
about complex systems of systems. He is the Principal Investigator on a
Systems Engineering Research Center sponsored by NAVAIR investigating
model-centric engineering. He has received research funding from the
National Science Foundation, Federal Aviation Administration, and National
Institute of Standards and Technology.

Maria Coelho received a B.S. in Civil Engineering from the University of
Maryland, College Park, in 2015, and the M.S. in Civil Systems from the
same institution in 2017. Maria is now working toward her Ph.D. in Civil
Systems at Maryland.

Mark Austin is an Associate Professor of Civil and Environmental
Engineering at the University of Maryland, College Park, with a joint
appointment in the Institute for Systems Research (ISR). Mark has served as
Technical Director of the Master of Science in Systems Engineering (MSSE)
Program at ISR. Mark has a Bachelor of Civil Engineering (First Class
Honors) from the University of Canterbury, Christchurch, New Zealand, and
M.S. and Ph.D. degrees in Structural Engineering from UC Berkeley.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX topicmap: <http://example.net/topicmap#>

SELECT * WHERE {?association topicmap:type topicmap:at_requirement ;
topicmap:belongsToTopicMap <http://example.net/topicmap#tm_MyTopicMap> ;
topicmap:hasRole ?role .
?role topicmap:type topicmap:art_sourceElement ;
topicmap:playedBy ?playedBy .
?playedBy topicmap:subjectIdentifier <http://example.net/SignalStrength#f_triggerMode>
}

Fig. 6. Test vectors to illustrate the association of requirements to test vec.

30

