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Abstract—This paper discusses a novel method of modeling 
and formal verification to support dependability analyses. The 
method is demonstrated in an example of a fault management 
capability of robots that interacts with equipment and humans. 
Hazard analyses produce derived requirements for fault 
management capabilities. These include safety critical 
functions for collision avoidance and temporary autonomy. 
Derived requirements are represented formally in models that 
are used to produce dependability evidence using theorem 
proving, model- based test vector generation, test execution 
with code coverage analysis, and requirement-to-test 
traceability. To address the challenges of heterogeneity of 
modeling tools and languages, Semantic Web Technologies 
are used for model composition and model transformation 
from modeling tools to formal analysis tools. 
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I. INTRODUCTION 

     Robotic systems used in advanced manufacturing, are cyber 

physical systems (CPS), providing competitive advantage to 

manufacturers [1]. Such robots interact with other 

manufacturing equipment and with humans, and could pose 

risk to both. System requirements for these robots, therefore, 

must include nonfunctional dependability requirements for 

failsafe operation such as: safety, security, reliability, and 

availability [2]. These requirements are derived from fault and 

hazard analyses. CPS are smart, networked systems with 

embedded sensors, computer processors, and actuators that 

sense and interact with the physical world in real-time [3]. 

CPS systems are heterogeneous in design, and oftentimes 

provide critical services, work with unreliable networks and 

provide spatial mobility [4]. Due to dependability 

requirements on CPS, they often possess fault 

management 

capabilities that rely on software monitoring using various 

sensors, as well as control of actuators to help avoid mishaps.  

Dependability is a cross-cutting system property. For many 

years it has been known that the processes used to ensure 

dependable systems are costly and that these costs increase 

with the size and complexity of the CPS [5]. Verification is a 

key element of this cost. NASA, for example, presented 

industry data indicating that verification is 88 percent of the 

cost to produce aircraft software meeting DO-178B [6] level A 

criteria (i.e., safety critical systems), and 75 percent of the cost 

of meeting level B criteria [7]. Further, the National Institute 

of Standards and Technology (NIST) Foundations for 

Innovation in Cyber-Physical Systems report [1] identifies 21 

barriers and challenges for CPS dependability (i.e., reliability, 

safety, and security). Some of the high priority challenges 

include: 1) the need for increasing coverage of verification and 

validation (V&V) while reducing costs, 2) coping with 

complexity and scale of systems when performing V&V, and 

3) the inability to apply formal methods at appropriate

abstraction levels, especially for a typical engineer. A similar

report from the European ARTEMIS Research agenda cited

similar needs [8].

Oftentimes, significant manual effort and expertise have 

been required to verify safety-critical software. Formal 

methods, providing a more automatic means of verification, 

hold promise. However, despite advances made in theorem 

provers and model checkers aimed to support verification, 

challenges remain in making their use practical [1][9]. Some 

of the most cost-effective approaches use formal models to 

prove satisfiability, verify safety properties, and, as a side-

effect, produce test vectors that include inputs and expected 

outputs to be used in testing the target software. The use of 

these, however, has been limited to specific modeling 

languages and tools [10]. Furthermore, while it is critically 

important to have defect-free specifications, the actual 

software implementation needs to be verified in its operational 
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context. The Federal Aviation Administration (FAA), for 

example, still requires software testing with code coverage 

typically based on modified condition/decision coverage [11]. 

The goal of achieving dependability is further complicated 

because the task of engineering CPS is inherently multi-

disciplinary, typically involving the integration of mechanical, 

electrical, thermal, software control, networks, reliability, 

safety, and cost, among others. The specification of CPS 

systems is distributed across models defined in these various 

viewpoints. Several challenges emerge. First, there may be 

“common sense” assumptions about dependability that are not 

explicitly characterized in any of these models. Second, in the 

process of creating analytical models, the modeler may, 

inadvertently or out of practical necessity, introduce 

constraints that are inconsistent with assertions made by 

models representing other viewpoints. Recognizing these 

inconsistencies across viewpoints can be a challenge [12]. 

Third, there is heterogeneity itself; a DARPA research project 

[13] cited challenges arising due to the diversity of domain

engineering tools, and the span of design flow activities

essential for the design of complex CPS. Fourth, tracing

requirements through the various levels of abstraction and

models is a challenge.

This paper discusses methods, models and tools to address 

some of these challenges. While the paper discusses these 

challenges in the context of the dependability analysis of a 

telepresence robot, the approach is generally applicable to 

CPS. Section II discusses strategies and methods contributing 

to CPS dependability analyses. Section III discusses a case 

study and provides an overview of the hazard analysis that 

produces derived requirements for the fault management 

capability of a telepresence robot. Section IV discusses formal 

verification of the fault management capabilities derived from 

the hazard analysis. This includes detailed behavioral models, 

model transformations to formal method tools supporting 

satisfiability analysis, test vector generation, test driver 

generation, test execution and results analysis, and code 

coverage analysis. Section V discusses the use of semantic 

web technologies (SWT) and topic maps to support cross-

domain analysis. Section VI provides a scenario for using 

topic maps for composing requirements and formal models 

prior to model transformation into a representation for formal 

method tools. Section VII assesses the preliminary finds of the 

method and prototype, and provides some metrics. Section 

VIII provides some conclusions.  

II. ACCESSING DEPENDABILITY FOR CPS

A survey on the state-of-the-art in industrial automation 

cited strategies and methods that could contribute evidence of 

dependability [9]. In particular, the survey cited model-based 

engineering (MBE), formal methods, design patterns and 

generative programming as promising. A broad survey across 

industry, government and academia suggests that adoption of 

model-centric engineering (MCE) is accelerating [14]. MCE 

includes the discipline-specific design models typically 

associated with MBE, as well as Model Based System 

Engineering (MBSE) system models, models for “ilities,” and 

models integrating software, hardware, surrogates and 

humans-in-the-loop.  

A trend in MCE is to use graphical domain-specific 

modeling (DSM), where the underlying domain-specific 

language (DSL) provides precise semantics. DSMs are often 

more constrained than general purpose modeling languages 

because they are targeted at specific viewpoints associated 

with a specific domain and engineering disciplines. Further, 

DSM environments often provide more dynamic capabilities 

to support synthesis (e.g., code generation) and simulation.  

Formal methods are fundamentally about proof, and 

consequently are often supported by theorem provers [15], 

model checkers [16] and Satisfiability Modulo Theory (SMT) 

solvers. Behaviors in CPS often involve some type of motion 

control, planning, and surveillance, which is modeled with 

nonlinear functions and constraints. SMT solvers can check 

hundreds of thousands of Boolean and integer clauses, but 

may be unable to determine the satisfiability or unsatisfiability 

of nonlinear formulas. While formal methods have 

traditionally been applied to discrete models, CPS also relies 

on continuous models used for dynamic systems. Certain 

hybrid logics, such as differential dynamic logic, support 

formal methods for continuous control systems [17]. Others 

have extended deductive formal methods with inductive 

machine learning capabilities [18]. 

While there are strong arguments for applying formal 

methods to dependability analysis, Church’s Thesis shows that 

there is no absolute validation criterion [19]. Further, it is 

known that no amount of testing can guarantee a program’s 

correctness. Even where formal methods have been applied to 

system models, systems have failed to operate correctly in the 

target environment [20]. Therefore, testing will play a role in 

the V&V of CPS for some time to come. Surveys of strategies 

to produce tests using model checkers [21] and SMT solvers 

[22] found that their fault-finding effectiveness was limited,

primarily because the selected input values did not expose

faults in the software.

There are other research needs and approaches that can 

contribute to more comprehensive dependability. Simulations 

of continuous behavior can contribute to verification evidence, 

but guaranteeing properties such as safety is challenging 

because the space of possible simulations is so large [17]. 

Rajhans et al. cite a number of approaches towards multi-

model design and analysis of CPS, but notes that most are 

problem-specific [23]. Their research investigates frameworks 

to compose and reason about multiple types of models, where 

the various model views of the underlying system use 

structural and semantic mappings to ensure consistency and 

enable system-level verification in hierarchy and composition. 

Section V discusses a unique approach to address some of the 

same objectives for using SWT for model transformations 

[24], but the new approach uses topic maps for cross-domain 

integrations of domain ontologies. 

Ontology-based knowledge and reasoning frameworks are 

being developed to support decision support for correct-by-

design of CPS [25]. NASA is using design patterns in an 

extended MBSE framework that leverages an ontology to 
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verify compliance and avoid potential system engineering 

issues [26]. Finally, so as to improve dependability, CPS are 

increasingly designed to act autonomously. Toward this end, it 

is common to use embedded runtime capabilities such as fault 

management to ensure safe operation for both fault and failure 

scenarios. These runtime capabilities are key to failsafe 

operations, but they must be rigorously verified and validated. 

III. CASE STUDY

The case study describes fault management capabilities for 

two safety-critical scenarios of a telepresence robot. In these 

scenarios, the telepresence robot provides services to an 

enterprise that spans multiple locations. The robot is used by 

various remote personnel to rapidly assess problems and make 

recommendations to technicians on site [27]. The remote 

operator uses wireless services to control the robot. However, 

the robot must operate autonomously and safely if the wireless 

connectivity is lost. In addition, the robot must be able to 

autonomously avoid collisions with objects and human 

regardless of the wireless connectivity. This section discusses 

details that yield requirements for fault management 

capabilities.  

The case study is based on a four-course graduate series in 

CPS [28]. In addition, four master projects extended two 

prototypes using hazard analysis, fault tree analysis (FTA), 

and failure modes and effects analysis (FMEA). These 

established derived requirements for introducing combinations 

of hardware and software for design, simulation, 

implementation and model-based testing of the fault 

management software.  

Fig. 1. Integrated system engineering and hazard analysis processes derives 
requirements that drive the fault management design and formal verification. 

Fig. 1 is an activity diagram illustrating the relationship 

between general systems engineering tasks and the tasks of 

dependability analysis. Not depicted in the diagram are the 

feedback loops between dependability analysis and systems 

engineering. The partition on the left side of Fig. 1 represents 

the activities that produce a SysML model of the telepresence 

system starting from continuous development and refinement 

of the customer needs, system and functional requirements, 

logical architecture and ultimately detailed behavior 

specification [29]. The final activity in the left partition relates 

to the formal verification of the fault management capabilities, 

which is discussed in Section IV. 

Fig. 2 depicts a partial FTA for the system. The two 

capabilities derived from the hazard analysis that are believed 

to have the highest safety risk are:  

Network Signal Failure: The robot’s wifi network 

connection either loses signal strength or loses connection 

with the Internet server altogether. 

Collision Sensor Failure: Collision sensors fail to respond 

to the object in a path; this may result in the collision of the 

robot with that object. 

Fig. 2. Partial fault tree analysis (FTA) example showing basic events and risk 
mitigations [27]. 

The partition on the right side of Fig. 1 illustrates a top-

down approach to modeling dependability. It consists of 

identifying mishaps, creating a hazard list, prioritizing system 

failures, and performing fault tree analysis to identify the basic 

events that could lead to a system failure. Concurrent with 

design decisions in the left partition, there is an activity to 

perform FMEA to assess the risk and impacts of components 

that could be involved in fault or failure scenarios. These 

analyses combine top-down FTA, with bottom-up FMEA, to 

produce derived requirement that are integrated with existing 

requirements. The results initiate activities to update use cases, 

behaviors, and the product’s logical and physical design.  

A metamodel for an FMEA is shown in Fig. 3. Starting with 

the design of a component, FMEA attempts to quantify the 

risks of failure of the component’s function, including the 

effect and cause. The motivation for the FMEA is to design 
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controls to mitigate risks. A risk value  (risk priority number, 

RPN) is calculated based on the severity (S) of the failure, 

probability (P) of occurrence, and detectability (D) prior to 

failure (e.g., RPN = S x O x D). The fault management models 

characterize both potential faults and failures relative to the 

sensor inputs and system states, and specify controls for 

motion control. 

Fig. 3. Metamodel illustrates the conceptual elements involved in Failure 
Modes and Effects Analysis (FMEA). 

IV. MODEL-BASED FORMAL VERIFICATION 

The hazard analysis produces derived requirements that 

factor into the fault management design and implementation. 

The SysML models discussed in Section III provide an 

abstract representation of the system blocks, internal block and 

their relationships. The behaviors represented in SysML 

activity, sequence, and state diagrams are adequate to identify 

the threads associated with the software control and data 

flows, however those specifications are not sufficiently formal 

to precisely model behaviors. Hence they are not sufficiently 

formal to apply automated methods of verification. Therefore, 

detailed behavioral models were created. 

There are a few tools suitable to formally model and verify 

fault management behaviors [10] [22]. Among those, the 

standard language Modelica and the OpenModelica tool  [30] 

were chosen. Modelica is equation-based and object-oriented. 

Modelica is acausal, meaning that the direction of information 

flow between model components is not specified a priori. 

Modelica is commonly used for modeling and simulating the 

physical parts of a CPS to investigate properties of a possible 

system designs. The continuous-time semantics of the models 

are specified using differential-algebraic equations, which can 

be further composed and connected into hierarchical model 

structures. Modelica also supports hybrid models, combining 

discrete and continuous-time semantics [31].  

Modelica is integrated into the dependability analysis using 

SWT. SWT includes standard languages such as the Web 

Ontology Language (OWL) [32].  OWL provides a tool-

neutral means of specifying domain ontologies that map to 

metamodels [33] of modeling and analysis tools. The 

ontology-based approach uses a repository of linked graphs 

where an ontology provides a semantically precise 

conceptualization of a domain, but in a modeling tool-

independent way [34]. 

The prototype discussed herein uses SWT capabilities to 

transform a Modelica model into a representation suitable to a 

formal methods tool. An overview of the process that extends 

Fig. 1 is shown in Fig. 4. The SysML model along with 

derived requirements from the FTA and FMEA analyses were 

used to develop Modelica models for the behaviors that are 

implemented in the telepresence robot using Python. The SWT 

prototype performs a transformation from Modelica to the 

DSL of a toolset that performs satisfiability analysis, test 

vector generation and test driver generation [10]. The 

generated test driver wraps the implementation of the fault 

management code and executes all of the test vectors. The test 

driver captures the actual outputs, which are then compared 

against the expected outputs produced by the test vector 

generator. A Python code coverage tool [36] checks to 

determine if the test vectors have fully exercised all code 

statements and decisions. This was an iterative process both to 

correct unsatisfiable constraints in the Modelica model, and to 

improve the testability of the implementation to increase the 

test coverage. 

Fig. 4. Notional process flow for the modeling and analysis in the context of 
triple store repository that includes ontologies and RDF linked through the 
topic map, which integrates related element across different domains and 
viewpoints. 

Fig. 4 shows the interactions between modeling and 

analysis activities and their underlying OWL representation in 

the triple store, which is used to store and relate information as 

Resource Description Framework (RDF) triples (i.e., subject, 

predicate, object) [37]. The triples in the triple store can be 

viewed from two perspectives: as OWL, the triples represent 

an ontology, and reasoners can be used against the content to 

ensure that it is well-formed. As RDF, the triples are structures 

that can be used by SPARQL Protocol and RDF Query 
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Language (SPARQL) [38]. 

The left partition in Fig. 4 illustrates some of the modeling, 

transformation and analysis functions as Call Behavior 

Actions. Starting from the upper left of the figure, 

OpenModelica is used to produce Modelica models for the 

functions such as the wifi Signal Strength (wifiSS). The 

Modelica models are imported into to the triple store through a 

transformation into RDF that must be compliant with the 

Modelica ontology. The specific elements (i.e., individuals in 

OWL, and instances in RDF) are also linked into the topic 

map as RDF to create the cross-domain associations, discussed 

in Section V. 

Model transformations such as OWL2Analysis directly use 

the information in the triple store to produce transformed 

representations into the DSL of the analysis tool. Satisfiability 

analysis ensures that each thread of the model is satisfiable. 

The transformed representation into the DSL of the analysis 

tool is a first order logical formula represented in Disjunctive 

Normal Form (DNF). The satisfiability analysis first proves 

that the constraints (precondition) in each disjunct (logically 

AND’d set of Boolean-valued conditions) have a non-null 

input space, from which test inputs are selected and then those 

inputs are used with the input-to-output relationship 

(postcondition) to produce the expected outputs for the test. 

The identification of any unsatisfiable thread is added to an 

analysis graph and linked in the topic map in the triple store, 

as discussed in Section V. For all satisfiable threads, a test 

vector (inputs and expected outputs) is produced. The test 

driver generator uses the test vectors to produce a Python test 

driver that wraps the target code and then runs with code 

coverage analysis. 

V. CROSS-DOMAIN INTEGRATIONS USING TOPIC MAPS

Ensuring consistency across domains of a CPS contributes 

evidence of dependability. A new and unique contribution of 

the research is the use of SWT for cross-domain integration 

that composes information from different viewpoints, and 

their associated domain ontology, and then transforms the 

composed information into representations suitable to other 

tools. Related approaches [25] [35] for associating domain 

ontologies that share common information, include: Merging: 

Ontologies for similar domains are merged into one single 

coherent ontology. Alignment: Complementary domains 

ontologies are linked, resulting in two or more ontologies. 

Integration: Ontologies from different domains are merged in 

one single ontology.  

The prototype discussed herein uses an approach that is a 

hybrid of alignment and integration. The prototype relates 

information across domain viewpoints using an ontology-

based representation of the Topic Map Data Model [39] [40]. 

Topic maps possess predefined properties to organize concepts 

and occurrences into a hypergraph, including: names of 

subjects, and occurrences and roles played in associations with 

other topics; these are somewhat analogous to the concept of 

using an index in a book to find specific topics that are located 

in different contexts (sections) within the book. Topic maps 

were designed to ease merging, and to support interoperability 

of ontologies. The rationale for using an ontology-based 

formalization of topics maps is to leverage the SWT for 

querying and automated reasoning using the hybrid approach 

to alignment and integration.  

The TopicMapManager, shown in Fig. 4 is a tool that 

allows users to select elements from different graphs in the 

triple store or other linked repositories. The key concepts of 

topic maps include: Topics, Associations, and Occurrences. 

Topics correspond to the subject or object of an RDF triple. 

An occurrence is a link to an element in another ontology or to 

an external resource denoted by an Internationalized Resource 

Identifiers (IRI). An association is a relationship between two 

or more topics. This allows subjects to be related, even if they 

have different names in different viewpoints (through the use 

of a name variant). This addresses the common problem in 

integration scenarios where the same logical element has 

different names in different viewpoints.  

Some aspects of the topic map concept are formalized here 

to describe a problem to be resolved with topic maps. As 

reflected in (1) below, for most CPS there are a set of domain 

viewpoints (DV) (e.g., network, electrical, software control) 

that are defined in terms of a metamodel (MM) for each domain 

viewpoint and an associated application model (AM) (e.g., wifi 

Modelica model), where the AMi conforms to the MMi. For 

each domain viewpoint there is a mapping to an ontology 

namespace (NS), ontology (O), and set of instances (I) (e.g., 

RDF triples, subject-predicate-object) that must conform to 

the ontology ODVi in the context of the namespace NSDVi. 

NSDVi is actually a set of namespaces used in the context of the 

ontology, where the default context is the union of the 

elements. This is inherently represented as a graph (G) Gi in 

the triple store repository.  

DVi: {MMDVi, AMDVi} → Gi: {NSDVi, ODVi, IDVi} (1) 

Any NSj contains a set of namespace prefixes that when 

used to characterize information in the triples Ij must conform 

to Oj an OWL ontology. As reflected in (2) below, a 

transformation (t) tDVi in the context of a namespace, 

ontology, and instances using SWT SPARQL queries, rules 

and inferencing produces information in the form of 

application models AMj that conforms to the MMj of the DVi of 

the analytical function aj (e.g., satisfiability analysis). An 

example of this mapping is the OWL2Analysis 

transformation, shown in Fig. 4. 

tDVi(NSDVi, ODVi, IDVi, AKDVi) → aj(DVi) ∧ i ≠ j (2) 

Note, that while it is convenient and possibly more elegant 

to use rules and inferencing to support aspects of a model 

transformation, doing so hides the details. In contrast, the use 

of SPARQL queries to accomplish the model transformations 

makes the actual details of the transformation more explicit, 

reviewable and testable. For example, the SPARQL queries 

can be run against a repository as a form of testing using a 

web browser. 

In the process of composing information for a cross-domain 

analysis, the only elements of the component viewpoints 
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queried are those relevant to the composed analysis. Each 

topic in a topic map has subject identifiers, which are used in 

merging of topics for cross-domain analysis. This provides a 

cross-domain linking capability. Assume (3) that there is a set 

of graphs Gn where n > 2. Assume, that there is a special graph 

GTM that is defined by the namespace for the topic map (NSTM), 

ontology for the topic map (OTM) and a set of instances ITM.  

GTM: {NSTM, OTM, ITM} (3) 

As formalized in (4), there exists a topic map defined by the 

named individuals ITMk in GTM, and for each subject (s) for all 

triples (tr) trk in every Gi ≠ GTM for all i ≤ n, if and only 

if those subjects (s) and objects (o) are related by a 

predicate (p), and p is in the set of topic map-relevant 

predicates (P). The set ITM can be populated using SWT 

rules.  

GTM: {NSTM, OTM, ITM} ∋ 

[ITMk = x: {x |s ∨ o} ⇔ ∀k in trk(s,p,o) ∧ p 

∈ P ∧ ∀i [i ≤ n ∧ Ii ≠ ITM]] (4)

There were few resources that use Modelica and SWT [41].

Therefore, integrating Modelica into the prototype 

(Modelica2OWL in Fig. 4) required the development of a 

Modelica ontology and an RDF model export capability from 

OpenModelica. The Open Modelica Grammar developed in 

ANTLR [42] provided the basis to parse the Open Modelica 

files into an Abstract Syntax Tree (AST), which provided the 

needed capabilities to parse and create a RDF representation 

from OpenModelica. The generality of the Modelica language, 

the low-level of information provide by the AST, and the 

object-oriented nature of Modelica allowed information to be 

represented in RDF at a various level of granularity (e.g., 

Model, Block, Equations, Expression). 

The current prototype is configured to automatically 

populate topic map individuals for a subset of predicates 

rdf:type when the object is modelica:Block. The 

individual Associations candidates are inferred by name 

association, but can be user-specified. This allows information 

from different ontologies to be composed with Modelica at the 

Block level. Modelica blocks contain variable definitions as 

well as equations. If the topic map is configured to include 

objects of the type modelica:Equations this would 

permit information to be composed from different domains at 

the Equation level. This approach provides a way to have 

composition at various levels of granularity. An example is 

discussed in Section VI in the context of linking requirements 

to Modelica blocks and generated test vectors. 

VI. REQUIREMENTS AND TRACEABILITY

Requirement-to-test traceability is another useful, and 

sometimes required [6] [11], criteria for assessing 

completeness, and for tracing derived requirements from 

various levels of abstraction and fidelity to tests. The tool 

supporting test vector generation [10] has a built-in 

requirement management capability that allows requirement 

statements to be linked at the block level or to low-level 

statements (i.e., pre-condition, post-condition). The 

requirement is also linked to the generated test vector as 

shown in. The requirements for the telepresence robot were 

captured as SysML requirement blocks, but there was no 

direct way to link them to the Modelica model.  

The prototype includes a RequirementManager as shown in 

Fig. 4 that is associated with a requirements ontology derived 

from a goal-driven approach to requirements engineering [43]. 

Requirements associated with the fault management capability 

were added as RDF instances associated with the requirement 

ontology. The TopicMapManager was used to associate those 

requirements with blocks from the Modelica model. The 

OWL2Analysis tool has an option to use associations, such as 

requirements, defined in the topic map to be included during 

the model transformation process. This provides a means to 

link requirement to transformed Modelica blocks in the DSL 

of the analysis and test vector generation tool. An example of 

the namespace PREFIX and SPARQL query for getting a 

requirement linked through the topic map is shown below in 

equation (5). This query finds all of the requirement 

associations for the elements in the topic map that has the role 

of a source (e.g., Modelica block) that is currently being 

processed. The variables ?association, ?role, and 

?playedBy are returned by the query, for the 

modelica:Block f_triggerMode. An example of two 

of the 18 test vectors with linked requirements is shown in 

Fig. 6. While the MCE study [14] suggests that there will be 

increased use of formal models, it is likely that subject matter 

experts from various discipliens will still use high-level 

requirements or constraints that need to be traced to the 

detailed models. The integration of a requirement ontology 

with the topic map provides a means to compose information 

and transform viewpoints into one or more analytical models 

to provide the needed V&V evidence. 

VII. METHOD ASSESSMENT AND METRICS

The process undertaken by the students demonstrated that in 

one semester, masters-level students could perform 

comprehensive dependability analysis spanning the entire 

systems engineering life cycle. The process starting from the 

hazard analysis was iterative in nature. In addition, the 

development of the fault management modeling and analysis 

was also iterative, both in learning the tools and methods, but 

also in using the formal analysis to improve jointly the 

testability of the design and its implementation. There were 

numerous satisfiability issues (i.e., contradictions in the 

model) detected as the model and implementation were 

evolved.  

Design-for-testability has been a key tenet in hardware 

design for many years, but it is not so well followed in 

software. The initial fault management software was not 

implemented in a manner that allowed the generated tests to 

achieve a high degree of code coverage; it was re-factored 

several times. Each modification to the design often resulted 

in small modifications to the detailed behavior model and the 

implementation. When the test results ultimately showed that 
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the actual values from the implementation matched the 

expected values for all test vectors, a Python code coverage 

tool was used to verify the completeness. This is depicted in 

Fig. 5. The gaps in code coverage are due to code that directly 

received input socket connections or interactions with the 

hardware that could not be easily simulated. These types of 

checks were verified by physical testing under combinations 

of conditions where collision avoidance scenarios were 

introduced and the wifi signal was lost. The current prototype 

for performing OWL2Analysis transformations places some 

idiosyncratic constraints on the formulation of the Modelica 

model. Some of these constraints may disappear as the 

prototype matures. Some appear necessary to leverage 

automated capabilities from formal analysis to code generation 

tools. Modeling guidelines may be needed to best leverage 

tool capabilities [13]. 

Fig. 5. Code Coverage Metrics 

Model and requirements engineering (RE) are inherently 

interactive. Inconsistencies, satisfiability issues, and coverage 

deficiency (issues) are added to another part of the analysis 

ontology and linked to the topic map. Future work will extend 

this information to use “issue” management as a means to 

drive a system effort to completion. This applies to RE, which 

is inherently a process for moving from goals to precise 

statements, but in this process the requirements can be 

inherently incomplete and inconsistent. Ontologies provide a 

means for inferring information that can be used to move from 

incomplete to complete requirements [43]. Ontologies provide 

a means to continuously check for, and manage both 

incompleteness and inconsistencies, and this can provide to 

new types of objective measures. Such an approach can also 

be stochastic where modeling patterns are applied to assess 

likelihood of inconsistencies in models [12]. 

VIII. CONCLUSION

This paper has discussed models, methods and tools 

required to achieve dependability in CPS. Specifically, 

dependability builds on techniques for hazard analysis such as 

fault tree analysis to identify the basic events that could lead to 

a mishap. After design of the various subsystems and 

component, FMEA is needed in order to target where best to 

apply monitors and controls that would address fault and 

failure modes. Models supporting these fault management 

capabilities need to be carefully designed and analyzed. The 

resulting implementations should be rigorously verified to 

ensure that the monitoring and control capabilities work 

flawlessly.  This paper describes novel use of tool-neutral 

SWT and topic maps as a means to integrate models for cross-

domain dependability analysis using formal verification tools. 

The SWT infrastructure relates information in a semantically 

precise way so as to improve semantic consistency across 

domains and viewpoints. This should strengthen the 

dependability argument for CPS in which the tool is applied.  
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX topicmap:  <http://example.net/topicmap#> 

SELECT * WHERE {?association topicmap:type topicmap:at_requirement ; 
topicmap:belongsToTopicMap <http://example.net/topicmap#tm_MyTopicMap> ; 
topicmap:hasRole ?role . 
?role topicmap:type topicmap:art_sourceElement ; 
topicmap:playedBy ?playedBy .  
?playedBy topicmap:subjectIdentifier <http://example.net/SignalStrength#f_triggerMode> 
} 

Fig. 6. Test vectors to illustrate the association of requirements to test vec.
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