
365

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Semantic Behavior Modeling and Event-Driven Reasoning for Urban System of Systems

Maria Coelho and Mark A. Austin
Department of Civil and Environmental Engineering,

University of Maryland, College Park, MD 20742, USA
E-mail: memc30@hotmail.com; austin@isr.umd.edu

Mark Blackburn
Stevens Institute of Technology,

Hoboken, NJ 07030, USA
E-mail: mblackbu@stevens.edu

Abstract—Modern urban infrastructure systems are defined by
spatially distributed network structures, concurrent subsystem-
level behaviors, distributed control and decision making, and
interdependencies among subsystems that are not always well
understood. The study of the interdependencies within urban
infrastructures is a growing field of research as the importance
of potential failure propagation among infrastructures may lead
to cascades affecting multiple urban networks. There is a strong
need for methods that can describe the evolutionary nature
of “system-of-systems” (SoS) as a whole. This paper presents
a model of system-level interactions that simulates distributed
system behaviors through the use of ontologies, rules checking,
message passing mechanisms, and mediators. We take initial steps
toward the behavior modeling of large-scale urban networks as
collections of networks that interact via many-to-many association
relationships. The prototype application is a collection of families
interacting with a collection of school systems. We conclude
with ideas for scaling up the simulations with Natural Language
Processing.
Keywords-Systems Engineering; Ontologies; Behavior Model-

ing; Mediator; Network Communication.

I. INTRODUCTION

This paper is concerned with the development of modeling
abstractions, procedures, and prototype software for the be-
havior modeling of urban systems of systems with ontologies,
rules and message passing mechanisms. It builds upon our pre-
vious work [1], [2] on distributed systems behavior modeling
with semantic web technologies.
A. Problem Statement

The past century has been marked by outstanding advances
in technology (e.g., the Internet, smart mobile devices, cloud
computing) and the development of urban systems (e.g., trans-
portation, electric power, waste-water facilities and water sup-
ply networks, among others) whose individual resources and
capabilities are pooled together to create new, more complex
systems that offer superior levels of performance, extended
functionality and good economics. While end-users applaud
the benefits that these systems of systems afford, model-based
systems engineers are faced with a multitude of new design
challenges that can be traced to the presence of heterogeneous
content (multiple disciplines), network structures that are spa-
tial, multi-layer, interwoven and dynamic, and behaviors that
are distributed and concurrent.

Large-scale urban systems do not follow a standard cradle-
to-grave lifecycle. Instead, the constituent domains within a

city evolve over extended periods of time in response to
external forces (e.g., the need for economic expansion) and
disruptive events (e.g., the need for planning of relief actions
in response to a natural disaster). In both cases, planning of
urban operations is complicated by the large scale of modern
cities, the large number of constituent behaviors, and multiple
dimensions of interdependency among physical, cyber and
geographic systems [3]. These facts are what makes cities
“system of systems,” rather than just systems, and they change
the very nature of systems design and management. For exam-
ple, in order for the communication among the participating
urban domains to occur in an orderly and predictable way,
designers need to pay attention to the boundaries (or interfaces)
of domains [4]. Similar concerns exit for the replacement of
aging infrastructure. In his article on the topic of complex
system failure “How Complex Systems Fail,” Cook discusses
how complex systems are prone to catastrophic failure, due to
the impractical cost of keeping all possible points of failure
fully protected, and even identifying them all [5]. When part
of a system fails, or perhaps an unexpected combination of
localized failures occurs, there exists a possibility that the
failure will cascade across interdisciplinary boundaries to other
correlative infrastructures, and sometimes even back to the
originated source, thus making highly connected systems more
fragile to various kinds of disturbances than their independent
counterparts. Figure 1 presents an overview of some generic
interdependencies among key infrastructure sectors: oil and
natural gas, electricity, transportation, water, and communica-
tions.

B. Scope and Objectives

In order to understand how cascading failures might be best
managed, it is necessary to have the ability to model events
and the exchange of data/information at the interdependency
boundaries, and to model their consequent effect within a
subsystems boundary. This points to a strong need for new
capability in modeling and simulation of urban infrastructure
systems as system-of-systems, and the explicit capture of
infrastructure interdependencies. We envision such a system
having an architecture along the lines shown in Figure 2, and
eventually, tools such as OptaPlanner [7] providing strategies
for real-time control of behaviors, assessment of domain
resilience and planning of recover actions in response to severe
events. This paper presents a model of distributed system-
level behaviors based upon the combined use of ontologies,
rules checking, and message passing mechanisms, and explores

366

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Illustration of the interdependent relationship among different infrastructures [6].

Transportation System

Transportation Domain

Metro System Routes

Bus RoutesUrban Business

Business / Work Domain

Mediator
Business − Trans.

Mediator

Flows of: information,
goods, energy.

Flows of: information,
goods, energy.

goods, energy.
Flows of: information, Flows of: information,

Physical Infrastructure Domain

Power Network

OptaPlanner: Real−Time Network Control and Planning for System Recovery

Infrastructure − Business Government
Department

−− Behavior control
−− Resilience assessment
−− Planning for receovery

−− Behavior control
−− Resilience assessment
−− Planning for receovery

−− Behavior control
−− Resilience assessment
−− Planning for receovery

Utility Network

goods, energy.

Physical System Business System

Figure 2. Architecture for multi-domain behavior modeling with many-to-many associations.

367

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

opportunities for modeling urban systems as collections of
discipline-specific (or community) networks that will dynam-
ically evolve in response to events. As illustrated in Figure 2,
each community will have a graph that evolves according to a
set of community-specific rules, and subject to satisfaction of
constraints. The contributions of this paper are three-fold:

Contribution 1.We provide a framework for modeling concur-
rent, directed communication between all entities composing a
system. The architecture builds upon the framework presented
by Austin et al. [2], and in particular, extends the distributed
behavior modeling capability from one-to-one association re-
lationships among communities to many-to-many association
relationships among networked communities.

As illustrated in Figure 3, one-to-one association relation-
ships can be modeled with exchange of messages in a point-
to-point communication setup.

Mediator

Mediator−Enabled Communication

System−to−System Communication

Figure 3. Framework for communication among systems of type A and B.

The top part of the figure shows point-to-point communica-
tion in a one-to-one association relationship between systems.
Mediator enabled communication in a many-to-many associa-
tion relationship among systems are shown in the bottom half
of the figure. Many-to-many association relationship among
systems are enabled by collections of mediators. Each ontology
is paired with an interface for communication and information
exchange with other ontologies. From a communications stand-
point, this architectural setup is simpler than what is commonly
found in multi-hop routing of messages in wireless sensor
networks.

Contribution 2. We employ a novel use of software design
patterns and Apache Camel [8] [9], to allow communication
management in the urban system of systems framework. The
visitor design pattern is also implemented to allow for data
retrieval.

Contribution 3. We explore mechanisms for incorporating
notions of space and time in event-driven reasoning processes
for urban decision making.

The remainder of this paper proceeds as follows: Section

II covers related research that has been done in critical infras-
tructure simulation. Section III explains how Semantic Web
technologies [10] can be employed for semantic modeling and
rule-based reasoning. Section IV explains the advantages of
constructing a model with time and space reasoning. Section
V describes several aspects of our work in progress, including:
(1) Distributed system behavior modeling with ontologies and
rules, and (2) Use of mediators for behavior modeling of
distributed systems having many-to-many association relation-
ships among connected networks. We describe the software ar-
chitecture for an experimental platform for assembling ensem-
bles of community graphs and simulating their discrete, event-
based interactions. In Section VI we exercise this capability
with an application involving collections of families interacting
with multiple school systems. Domain-specific ontologies are
developed for family and school system domains, which, in
turn, import spatial (geometry) ontologies and rules [11] [12].
We conclude with ideas for scaling up the simulations with
Natural Language Processing (NLP).

II. RELATED WORK

A. Critical Infrastructure

Experience over the past decade with major infrastructure
disruptions, such as the 2011 San Diego blackout, the 2003
Northeast blackout, and Hurricane Irene in 2011, has shown
that the greatest losses from disruptive events may be distant
from where damages started. For example, Hurricane Katrina
disrupted oil terminal operations in southern Louisiana, not
because of direct damage to port facilities, but because workers
could not reach work locations through surface transportation
routes and could not be housed locally because of disruption
to potable water supplies, housing, and food shipments [13].
Interdependencies constitute a significant dimension for un-
derstanding system vulnerability. Examples of vulnerabilities
where systems could be brought down are an important basis
for identifying interdependencies and focusing on those that
are critical. Using data provided by references [14], [15]
and [16], Table I provides some examples of faults that
propagate through interdependency relationships of different
critical infrastructure sectors.

In its October 1997 report to the U.S. President, the
President’s Commission on Critical Infrastructure Protection
identified the nation’s eight critical infrastructures. It rec-
ognized the importance that interdependencies play in their
continuous and reliable operation, as well as the increased
security concerns and risks associated with them [17]. Al-
though interdependencies are a complex and difficult problem
to analyze, over the past twenty years increased effort by
the operational, research and development, and policy com-
munities has led to improvements in our ability to identify
and understand interdependencies among infrastructures, and
their influence on infrastructure operations and behavior. As a
case in point, Rinaldi and co-investigators [3] have proposed
a multi-dimensional taxonomy to frame the major aspects of
interdependencies: types of interdependencies, infrastructure
environment, coupling and response behavior, infrastructure
characteristics, types of failures, and state of operations.
These dimensions point to the need for development of a
comprehensive architecture for interdependency modeling and
simulation. Many models and simulations exist for individual

368

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Energy: Oil and Gas Energy: Electricity Transportation Water Communication

Energy: Oil and Gas No fuel to operate power
plant motors and generators

No fuel to operate transport
vehicles

No fuel to operate pumps
and treatment. Gas pipeline
failure located beneath
roads may contaminate
water pipeline also located
beneath roads

No fuel to maintain tem-
peratures for equipment; no
fuel to backup power

Energy: Electricity No electricity for extraction
and transport (pumps, gen-
erators, control systems)

No power for traffic lights,
rail systems, street lights.
Passengers may be trapped
inside trains. Air transport
may become compromised
due to to the loss of commu-
nications and unlit runways.

No electric power to operate
pumps and treatment lead-
ing to potential water qual-
ity issues and pumping is-
sues in buildings. No power
to operate flood protection
systems.

No energy to run cell tow-
ers and other transmission
equipment

Transportation Delivery of supplies and
workers interruption

Delivery of supplies and
workers interruption

Delivery of supplies and
workers interruption

Delivery of supplies and
workers interruption

Water No water available for pro-
duction, cooling, and emis-
sions reduction

No water available for
production, cooling, and
emissions reduction. Water
pipeline failure located
beneath roads may damage
power lines located beneath
and above roads

No water for vehicular oper-
ation. Water pipeline failure
located beneath roads may
interrupt traffic.

No water available for
equipment cooling. Water
pipeline failure located
beneath roads may damage
cables and underground
wiring also located beneath
roads, and above ground
networks aligned with roads

Communication Inability to detect breakages
and leaks. Remote control
of operations interruption

Inability to detect and main-
tain operations and electric
transmission

Inability to identify and lo-
cate disabled vehicles, rails,
and roads. No provision of
user service information.

Inability to detect and con-
trol water supply and qual-
ity

TABLE I. Summary of urban faults propagated by interdependencies between critical infrastructure systems.

infrastructure behavior, but simulation frameworks that allow
for the coupling of multiple interdependent infrastructures
to address infrastructure protection, mitigation, response, and
recovery issues are only beginning to emerge.

B. Urban Interdependence Simulators

Pederson et al. [18] have compiled a survey on contempo-
rary research on critical infrastructure modeling and simula-
tion. This study showed a wide variety of ideas proposed in re-
cent years, and observed that the vast majority of these recently
implemented frameworks are based on agent-based technology.
In an effort to overcome some of the limitations associated
with agent-based frameworks, such as scalability and distorted
results, Rahman et al. [19] proposed a new type of framework
for simulating infrastructure interdependencies. The proposed
model captures physical interdependencies among different
critical infrastructures using precise mathematical expression.
Each entity and interaction between infrastructures is mapped
to a single equivalent semantic. In this way, components
defined in physical layer can interact with the decision making
layer through event forwarding mechanisms.

C. Urban System Ontologies

A detailed discussion the use of ontologies in urban de-
velopment projects can be found in Falquet, Metral, Teller
and Tweed [20]. Ontologies have been developed for the
geographic information sector, to model interconnections (me-
diators) among urban models, and to describe urban mobility
processes. Extensive studies have been conducted on the
development of ontologies for the geography markup language
(GML) and CityML, the XML markup language for cities [21].

As part of the recent interest in Smart Cities, researchers
have proposed so-called smart city ontologies. A close exam-
ination reveals that they contain an exhaustive list of things

you might find in a smart city, and proposals for relationships
among things, but are otherwise not smart at all.

Our viewpoint is that ontologies (including classes and
their associated data and object properties) need to be devel-
oped alongside rules, and that the resulting semantic modeling
systems need to be executable and capable of event-driven
processing. A notable effort in this direction is the DogOnt
ontology and rules for statechart behavior modeling of devices
in home automation [22].

III. SEMANTIC MODELING AND RULE-BASED DECISION
MAKING

A. Framework for Semantic Modeling

Model-based systems engineering development is an ap-
proach to systems-level development in which the focus and
primary artifacts of development are models, as opposed
to documents. As engineering systems become increasingly
complex the need for automation arises [23]. A tenet of our
work is that methodologies for strategic approaches to design
will employ semantic descriptions of application domains, and
use ontologies and rule-based reasoning to enable validation of
requirements, automated synthesis of potentially good design
solutions, and communication (or mappings) among multiple
disciplines [24] [25] [26].

The upper half of Figure 4 complements Figure 2, and pulls
together the different pieces of the proposed architecture for
distributed system behavior modeling with ontologies, rules,
mediators and message passing mechanisms. On the left-hand
side, the textual requirements are defined in terms of mathe-
matical and logical rule expressions for design rule checking.
Engineering models will correspond to a multitude of graph
structure and composite hierarchy structures for the system

369

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Meta−Domain Ontologies and Rules

Instances

Data
Requirement
Individual

verify

Textual Requirements define

Classes

Ontologies and Models

Design Rules

Engineering Model

System Structure

System Behavior

a c d

b

Reasoner

Relationships

Properties

Rules and Reasoner

import import import

im
po

rt

Ontology
Currency

Currency
Rules

Units
Ontology

Units
Rules

Spatial
RulesRules

Temporal

Temporal
Ontology

Spatial
Ontology

Figure 4. Framework for implementation of semantic models using ontologies, rules, and reasoning mechanisms (Adapted from Delgoshaei, Austin and
Nguyen [12]).

structure and system behavior. Behaviors will be associated
with components. Discrete behavior will be modeled with
finite state machines. Continuous behaviors will be represented
as the solution to ordinary and partial differential equations.
Ontology models and rules will glue the requirements to the
engineering models and provide a platform for simulating
the development of system structures, adjustments to system
structure over time, and system behavior. In a typical appli-
cation, collections of ontologies and rules will be developed
for the various domains (see, for example, Figures 1 and 2)
that participate in the system structure and system behavior
models.

The use of Semantic Web technologies for rule checking
has several key benefits [27], [28]: (1) Rules that represent
policies are easily communicated and understood, (2) Rules
retain a higher level of independence than logic embedded in
systems, (3) Rules separate knowledge from its implementation
logic, and (4) Rules can be changed without changing source
code or the underlying model. A rule-based approach to
problem solving is particularly beneficial when the application
logic is dynamic (i.e., where a change in a policy needs to
be immediately reflected throughout the application) and rules
are imposed on the system by external entities. Rules can be
developed to resolve situations of conflict and/or competing

objectives – such strategies use notions of fairness to prevent
deadlocks in the system operation. All three of these conditions
apply to the design and management of urban systems.

B. Working with Jena and Jena Rules

Our experimental software prototypes employ Apache
Jena and Jena Rules. Apache Jena [29] is an open source
Java framework for building Semantic Web and linked data
applications. Jena provides APIs (application programming
interfaces) for developing code that handles RDF (resource
description framework), RDFS, OWL (web ontology language)
and SPARQL (support for query of RDF graphs). The Jena
rule-based inference subsystem is designed to allow a range
of inference engines or reasoners to be plugged into Jena. Jena
Rules is one such engine.

Jena Rules employs facts and assertions described in
OWL to infer additional facts from instance data and class
descriptions. As we will soon see in the case study example,
domain-specific ontologies can import and use multi-domain
(or cross-cutting) ontologies, rules can be distributed among
domains (which is at odds with ideas within the Semantic
Web community that ontologies should be tightly coupled to
ontologies), and rules can be written to respond to events that
involve (or affect) reasoning among multiple domains. Such

370

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

inferences result in event-driven structural transformations to
the semantic graph model.

Jena also provides support for the development of builtin
functions that can link to external software programs and
streams of data sensed in the real world, thereby extending
its reasoning capability beyond what is possible with the basic
data types provided in OWL.

fact 3fact 1

derived fact 4

builtin function

external software

call

to semantic model
add new assertion

real world urban environment

AND

fact 2

sensors

urban data model

Figure 5. Framework for forward chaining of facts and results of builtin
functions to new assertions (derived facts).

Figure 5 shows, for example, the essential details for
forward and backward chaining driven by data collected from
an urban setting. To combat the lack of support for complex
data types, such as those needed to represent data for spatial
and temporal reasoning, we adopt a strategy of embedding
the relevant data in character strings, and then designing
builtin functions and external software that can parse the data
into spatial/temporal models, and then make the reasoning
computations that are required.

C. Data-Driven Generation of Semantic Models

In order to build the semantic models presented in Figure
4, there needs to be a pathway from the specification of
ontologies and rules to population of the semantic graphs with
individuals representing various forms of urban data.

As illustrated along the left-hand side of Figure 6, the
process begins with development of software for an abstract
ontology model (i.e., AbstractOntologyModel). AbstractOntol-
ogyModel contains software for the domain-neutral specifi-
cation and handling of ontologies and rules. Domain-specific
Jena Models are an extension of the abstract model. They are

Urban

AbstractOntologyModel
<< abstract >>

Model
Jena Semantic

Jena Rules Ontology XML Data File

hosting visitor
extend

load

visit

load load

Data Model

Figure 6. Data-driven approach to generation of individuals in semantic
graphs.

capable of systematically assembling semantic graphs, trans-
forming the graph structure with rules, and querying the graph
structure. Next, data is imported into Java Object data models
using JAXB, the XML binding for Java. After the ontologies
and rules have been loaded into the Jena Semantic Model,
the semantic model creates instances of the relevant OWL
ontologies by visiting the urban data models and gathering
information on the individuals within a particular domain.
Once the data has been transferred to the Jena Semantic Model
and used to create an ontology instance, the rules are applied.

It is important to note that while Figure 6 implies a one-
to-one association relationship between semantic graphs and
data, in practice a semantic graph model might visit multiple
data models to gather individuals.

IV. REASONING WITH TIME AND SPACE

Urban decision making processes are nearly always af-
fected by notions of time and space, which have universal
application across domains.

A. Reasoning with Time

Temporal logic describes how a system changes over time,
and apply when we want to know not what is true, but when?
For example, temporal logic allows us to determine if the
schools shown in Figure 5 have an age beyond their working
lifetime, and if the young residents of the house are old enough
to attend the local schools.

Formal theories for reasoning with points and intervals
of time are covered by Allen’s temporal interval calculus
[30], [31]. Notions of (calendar) time are supported as a data
type in Jena. Ontologies of time can be loaded into Jena.
Procedures for reasoning about points and intervals of time
can be implemented in Jena Rules.

B. Reasoning with Space.

Spatial logic is concerned with regions and their connec-
tivity, allowing one to address issues of the form: what is
true, and where? Figure 5 shows, for example, the border for
two schools and a house in the local neighborhood. Spatial
reasoning mechanisms allows us to verify if the schools share
a boundary and/or if the house is within the school zone.

371

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hasBoundingBox
String

hasGeometry

LineString

LineRing

Polygon Point

MultiPolygonMultiPoint

AbstractGeometryCollection

exterior

interior

contains

contains

AbstractGeometryBoundingBox

Figure 7. Abbreviated representation of spatial (geometry) ontology and associated data and object properties.

Formal theories for reasoning with space – points, lines,
and regions – are covered by region connected calculus [32].
A robust implementation of two-dimensional spatial entities
and associated reasoning procedures is provided by the Java
Topology Suite (JTS) [33].

An important detail of implementation implied by Figure
5 is the need for backend reasoning procedures associated
with JTS to operate independently of the source domains.
This is achieved with the spatial (geometry) ontology and
associated data and object properties shown in Figure 7. High-
level classes – abstract concepts – are provided for entities
that represent singular geometry (e.g., AbstractGeometry) and
groups of entities (e.g., AbstractGeometryCollection). Specific
types of geometry (e.g,, Polygon, MultiPoint) are organized
into a hierarchy similar to the Java implementation in JTS.
The high-level class AbstractGeometry contains a Datatype
property, hasGeometry, which stores a string representation
of the JTS geometry. For example, the abbreviated string
“POLYGON ((0 0, 0 5, ... 0 0))” shows the format for pairs of
(x,y) coordinates defining a two-dimensional polygon. Within
Jena Rules, families of builtin functions can be developed to
evaluate the geometric relationship between pairs of spatial
entities (e.g., to determine whether or not a point is contained
within a polygon) and return a boolean result. The latter is fact
in the reasoning process shown in Figure 5.

C. Reasoning with Time and Space.

Logics for time and space can be combined allowing
one to address issues of the form: We want to know when
and where something will be (or has been) true? Spatio-
temporal reasoning procedures in geoinformatics can be used
for predictive (i.e., looking forward in time) and historical (i.e.,
looking back in time) purposes. For example, Figure 5 shows
there are now two schools in our geographical area of interest.
But what about 50 years ago – perhaps it was farmland back
then?

V. DISTRIBUTED SYSTEM BEHAVIOR MODELING

A. Distributed System Behavior Modeling
Urban systems have decentralized system structures. No

decision maker knows all of the information known to all of
the other decision makers, yet as a group, they must cooperate
to achieve system-wide objectives. Communication and infor-
mation exchange are important to the decision makers because
communication establishes common knowledge among the
decision makers which, in turn, enhances the ability of decision
makers to make decisions appropriate to their understanding,
or situational awareness, of the system state, its goals and
objectives. While each of the participating disciplines may
have a preference toward operating their urban domain as
independently as possible from the other disciplines, achieving
target levels of performance and correctness of functionality
nearly always requires that disciplines coordinate activities
at key points in the system operation. This is especially
important for the planning of relief actions in response to
natural disasters.

Until very recently infrastructure management systems did
not allow a manager of one system to access the operations and
conditions of another system. Therefore, emergency managers
would fail to recognize this interdependence of infrastructures
in responding to an incident, a fact recognized by The National
Strategy for the Physical Protection of Critical Infrastructures
and Key Assets [34]. In such situations, where there is no
information exchange between interdependent systems, inter-
dependencies can lead to cascading disruptions throughout the
entire system in unexpected, undesirable and costly ways. The
objective of this research effort is to explore opportunities for
overcoming these limitations.
B. Software Architecture

Figure 8 shows the software architecture for distributed
system behavior modeling for collections of graphs that have
dynamic behavior defined by ontology classes, relationships
among ontology classes, ontology and data properties, listen-
ers, mediators and message passing mechanisms. The abstract

372

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

listener

Semantic Model: Domain 1 Semantic Model: Domain 2

Rules for domain 1 Rules for domain 2

AbstractOntologyModel
<< abstract >>

importimport
listens for ModelChange events

message input

message input

AbstractOntologyInterface
<< abstract >>

message passing

MediatorInterface: Domain 1 Interface: Domain 2

message passing

Figure 8. System architecture for distributed system behavior modeling with ontologies, rules, mediators and message passing mechanisms.

ontology model class contains concepts common to all ontolo-
gies (e.g., the ability to receive message input).

Domain-specific ontologies are extensions of the abstract
ontology classes. They add a name space and build the
ontology classes, relationships among classes, properties of
classes for the domain. In an urban setting, individual domain
ontologies may be constructed for infrastructure systems such
as water, communications, oil and gas, transportation, and
electric power systems shown in Figure 1. Instances (see
Figure 4) are semantic objects in the domain. By themselves,
the ontologies provide a framework for the representation of
knowledge, but otherwise, cannot do much and really aren’t
that interesting. This situation changes when domain-specific
rules are imported into the model and graph transformations
are enabled by formal reasoning and event-based input from
external sources.
C. Distributed Behavior Modeling with Ontologies and Rules

Distributed behavior modeling involves multiple semantic
models, multiple sets of rules, mechanisms of communication
among semantic models, and data input, possibly from mul-
tiple sources. We provide this functionality in our distributed
behavior model by loosely coupling each semantic model to a
semantic interface. Each semantic interface listens for changes
to the semantic domain graph and when required, forwards the
essential details of the change to other domains (interfaces)
that have registered interest in receiving notification of such
changes. They also listen for incoming messages from external
semantic models. Since changes to the graph structure are
triggered by events (e.g., the addition of an individual; an
update to a data property value; a new association relationship
among objects), a central challenge is design of the rules
and ontology structure so that the interfaces will always be
notified when exchanges of data and information need to
occur. Individual messages are defined by their subject (e.g.,
report receipt confirmation), a source and a destination, and
a reference to the value of the data being exchanged. The
receiving interface will forward incoming messages to the
semantic model, which, in turn, may trigger an update to the
graph model. Since end-points of the basic message passing

infrastructure are common to all semantic model interfaces,
it makes sense to define it in an abstract ontology interface
model.

VI. CASE STUDY PROBLEM

Whilst there are a number of definitions for critical national
infrastructure, from a city perspective the concept of critical
infrastructure is not well defined. Boyes et al. [35] proposed
that criticality in a city’s context addresses elements necessary
for the delivery of essential services to the populace who are
resident and/or work in the city and that impact is focused
at city rather than national level. The critical infrastructure
must encompass both the citys normal operating state, and its
ability to the basic facilities, services, and installations needed
for the functioning of a community or society. This includes
transportation and communications systems, water and power
lines, and public institutions including schools, post offices and
prisons.

Family Domain

Elementary School

Middle School

High School

MediatorFamily B

Family C

Family A

School Domain

Figure 9. Framework for communication among multiple families and
schools enabled by a mediator.

To illustrate the capabilities of our experimental architec-
ture, we now present the essential details of a simulation
framework for event-driven behavior modeling of a critical
urban system: education. In this case study set up, a mul-
tiplicity of families interact with schools embedded in an
urban environment. Interactions among groups of families and

373

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

schools is governed by ontologies, rules, and exchange of
information as messages, which pass through and are managed
by a mediator (see Figure 9). The decision making frame-
work includes reasoning with spatial attributes of families and
schools, and time-driven events.

A. Scenario for Family-School System Behavior Modeling

We now illustrate the capabilities of the proposed modeling
abstractions by working step by step through the following
scenario of interactions between families and the school sys-
tem: (1) Determine eligibility for enrollment, (2) Complete
enrollment form, (3) Receive enrollment confirmation, (4)
Report period starts, (5) Send reports home, and (6) Receive
parent signature. Evaluation of Step 1 involves combinations of
spatial and temporal reasoning. Steps 2 through 6 focus on the
exchange and processing of message among the participating
urban domains.

Figure 10 is a detailed view of the connectivity relation-
ships and flows of data/information in the family-school case
study scenarios. The enrollment process involves an exchange
of data from a family to the corresponding school in which
the child should enroll. Then, and some point later in time,
the school system sends a school report home.

B. Framework for Family-School-Urban Interactions

We begin by abstracting the urban components of the
problem from consideration, and simply focus on the model
for family school interactions.

Figure 11 shows a schematic of the schools in the
Columbia-Clarksville Area (shown on left) and fictitious
school zone boundaries (shown on right-hand side). As every
parent knows, the enrollment process involves the exchange of
specific information between schools and families. The school
system only allows enrollment of students who meet the age re-
quirements, and live within the school zone jurisdiction. Once
the child is accepted the school system takes over. They decide
when school reports will be sent home, and if the child is
entitled to school bus service. Some of these determinations are
done by comparing spatial entities, such as family addresses,
school addresses, and school zone boundaries. Addresses are
defined by latitude and longitude coordinates; therefore, a
simple calculation using the latitudes and longitudes of two
addresses can determine the distance between them. Similarly,
school zones are defined by a collection of latitude and longi-
tude coordinates that compose a polygon geometric shape. Any
algorithm that solves the point-in-polygon (PIP) problem can
determine if the address lies within the school zone boundaries.
This work uses OpenStreetMap tool to retrieve the latitudes
and longitudes necessary for the these comparisons. Figure 10
is an instantiation of the concepts introduced in Figure 8 and
shows the software architecture for a family-school interaction.

C. Instantiating Semantic Models with Data

In this problem setup, the information to be exchanged be-
tween ontologies is stored as key/value pairs in XML datafiles.
The key (e.g. “first name”, “citizenship”, etc.) identifies, and is
used to retrieve the values (e.g., “Mark”, “New Zealand”, etc.).
Textual content stored in the XML datafiles is extracted and

instantiated as class instances in the data model. Our prototype
implementation employs JAXB technology for the creation of
data models as shown in Figure 12. We then systematically
visit each element of the data model (the code is implemented
as a visitor software design pattern) and create instances of the
ontology classes. The latter are called Individuals), and they
are laden with the data from XML files.

D. Family and School System Ontologies

Our application employs OWL to define ontologies as
collections of classes, data and object properties, and the
relationships among them.

Figure 13 shows the relationship between classes in the
family ontology. Male, Female, Child and Student are sub-
classes of class Person. The class Boy is a subclass of class
Male. The class Person has properties that get inherited by all
subclasses such as hasAge, hasWeight, hasBirthdate, hasFami-
lyName, has FirstName, hasSocialSecurityNo, hasCitizenship.
The class Student has properties associated with school en-
rollment, such as livesInSchoolZoneOf, attendsPreschool, at-
tendsSchool, attend sElementarySchool, attendsMiddleSchool,
attendsHighSchool, and hasReportFrom. The class family has
property hasFamilyName, and the class Address has proper
ties hasLatitude and hasLongitude. Other properties such
as hasFamilyMember, belongsToFamily, hasFather, hasSon,
hasDaughter, and hasAddress define relation ships that hold
between objects.

In the same fashion, an ontology can be constructed for
the school system. Figure 14 shows the relationship between
classes in a school ontology. Elementary School, Middle
School and High School are subclasses of School. Grades 1
through 12 are subclasses of Grade. A school has properties
that get inherited by all school subclasses such as hasName.
A grade also has properties that get inherited by all grade
subclasses such as hasEnrollment. A student has properties
similar to the ones dened in the classes Person and Student
in the family ontology such as hasFirstName, hasFamily-
Name, hasBirthDate, hasAge, hasSocialSecurityNo, attend-
sElemntarySchool, attendsMiddleSchool, attendsHighSchool,
and hasReport. In addition, it also has properties such as
eligibleForSchoolBus and willArriveLate. The class Address
also follows the same pattern of the family ontology, with
properties hasLatitude and hasLongitude. The classes Calendar
and Event are included in this ontology to provide temporal
behavior modeling capabilities. The class Event has properties
hasStartTime and hasEndTime. The class Bus has property
hasArrivalTime. Other properties such as hasGrade, hasStu-
dent, isInGrade, hasStudentAddress, hasSchoolAddress, has-
Bus, livesInSchoolZoneOf and hasEvent define relationships
that can hold between objects.

E. Family and School System Rules

By themselves ontologies cannot model the dynamic evo-
lution of objects, properties and relationships. Consider the
family ontology, some of the data remains constant over
time (e.g., birthdates), while other data is dynamic (e.g.,
attending preschool). However, when coupled with a set of
domain-specific rules, ontological representations enable graph
transformations. In our application, we use Jena Rules to define

374

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Report

Family Graph
Model Model

listen

Family Interface

Family Domain

import

Reasoner

family rules

family − school
interaction rules

School System DomainMediator Domain

school system
rules

ReasonerReport

Enrollment Enrollment

import

Graph Model
School System

listen

School System
Interface ModelMediator

import

Figure 10. Software architecture for distributed behavior modeling in the family-school case study.

Clarkesville Elementary School

Clarksville Middle School

Riverhill High School

Pointers Run Elementary School

Clarksville Elementary School

Riverhill High School

Poinrers Run Elementary School
Clarksville Middle School

School Zone Boundary for
Clarksville Elementary

School Zone Boundary for
Pointers Run

Figure 11. Graphical interface for behavior modeling of family-school-urban geography system dynamics. The school and school zones correspond to the
Columbia-Clarksville Area, Maryland, USA.

375

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Generation of family and school semantic models, with input from the family data file, the school system data file, and data from OpenStreetMap.

domain-specific rules.

Figure 15 contains an abbreviated list of Jena rules for iden-
tifying relationships and properties within a family semantic
model. The combination of ontologies and ontology rules is
extremely powerful in scenarios where ontology graphs are
dynamic. Suppose, for example, that a boy Sam was born
December 10, 2007. Given a birthdate and the current year,
a built-in function getAge() computes Sam’s age. An age
rule defined using Jena Rules determines whether or not a
person is also a child. Therefore, the behavior modeling for the
family system is defined by the set of rules governing graph
transformations. Graph transformation can occur due to input
(e.g., family graph changes because a new child is born) or
time (e.g., the family graph changes because a specific member
is no longer a child).

Figure 16 contains an abbreviated list of Jena rules for
event-driven transformation of the School Semantic Model.
Rules are provides for attendance, progression through the
grades, timing of school reports, eligibility for transportation
services and event induced alerts. Transformations in the
semantic graph structure can also be induced by a variety
of temporal and spatial factors. From a family perspective,
individuals such as Sam are modeled as instances of the classes
Boy, Male and Child. From a school perspective, Sam is
eligible to become a student when he is between the ages
of 5 and 18, and his family lives within the defined school
zone. School reporting periods are events defined by intervals
of time on an academic calendar. When a built-in function
getToday() determines that the current time falls within one
of the “reporting intervals” school reports are sent home.
Similarly, the built-in function getDistance() computes the the
distance between Sam’s home address and the school address,
and a rule determines whether or not he is eligible for school
bus service. Each of these entities triggers a change in the

school semantic graph.

F. Rules for Family-School System Interaction

So far the family and school rule systems have been
completely decoupled and one might think that they operate
independently. In reality, a small set of rules that govern family
behavior are defined by the school system and distributed
to individual families in the family system. As illustrated in
Figure 17, rules for family-school system interaction define the
grades that are appropriate for each age and the schools (e.g.,
elementary, middle, high) that will be attended. In practice,
the family-school interaction rules are loaded into the family
system alongside the regular family system rules. The former
will inform Sam’s family when he is now old enough to attend
regular school by triggering a change to the family graph. This
change, in turn, will trigger the school enrollment process for
Sam to start preschool.

Family-school system interactions are also affected by
spatial concerns. In particular, a child can only enroll in a
particular school if he/she has a home address the lies within
its school zone. From a geometric standpoint (see Figure
7), this test is equivalent to verifying that the home address
(a geographic point) is contained within the school zone (a
geographic polygon). JTS can easily handle this computation.
In practice, however, resolving this issue is complicated by the
fact that the home address and school zone are contained in
different models. Thus, a strategy is needed whereby a family
can query the school system for details on the school zone and
do the point-in-polygon computation on the family model, or,
the child’s address is part of the enrollment package and the
school verifies spatial eligibility on the school system side. In
either case, a simple Jena rule can retrieve details of the point
and polygon in a string format – see the top right-hand side
of Figure 7 – and a Jena built-in function working with JTS

376

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Subclass of

hasAge

hasSocial...

livesInSch...

hasRepor...

hasBirthDate

attendsPr...

hasWeighthasFamil...

attendsSchool

attendsEl...

attendsMid...

hasAddress

attendsHi...

hasLongitude

hasLatitude

hasLastName

hasFamil...

belongsT...

Subclass of

hasSon

hasFather

Subclass of

Subclass of

hasDaughter

Subclass of

hasCitizen...

hasFirstName

Address

Male

Family

integer

string

string

string

string

string

boolean

boolean

boolean

integer

date

string

string

boolean

boolean

Boy

Person

double

Female

string

Student

Child

Figure 13. Family ontology diagram with classes, properties, and relationships among classes and properties.

377

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

hasEndTime

willArriveLate

hasBus

attendsHi...

hasAge

hasSchoo...

hasFirstName

hasLatitude

hasEvent

hasLastName

hasStudent

hasReport

hasArrival...

livesInSch...

isInGrade

hasSchoo...

hasName

hasSocial...

hasStartTime

hasGrade

Subclass of

hasEnroll...

Subclass of

Subclass of

Subclass ofSubclass of

hasStuden...

hasLongitude

attendsMid...

elegibleF...

attendsEl...

hasBirthDate

Subclass of

Bus

string[]
(external)

Address

boolean

string

string

string

string

Grade11

boolean

Grade10

boolean

integer

Grade12

dateTime

string

Grade08

HighSchool

boolean

boolean

MiddleSchool

ElementarySc...

Grade02

Grade04

School

Student

Grade06

Grade03

Event

dateTime

Calendar

dateTime

integer

Grade01

Grade05

date

Grade07

integer

boolean

Grade

Grade09

Figure 14. School system ontology diagram with classes, properties, and relationships among classes and properties.

can evaluate the point-in-polygon containment.

G. Mediator Design

When the number of participating applications domains
is very small, point-to-point channel communication between
interfaces is practical. Otherwise, an efficient way of handling
domain communication is by delegating the task of sending
and receiving specific requests to a central object. In software
engineering, a common pattern used to solve this problem is
the Mediator Pattern.

As illustrated in Figures 2 and 3, the mediator pattern
defines a object responsible for the overall communication of
the system, which from here on out will be referred as the
mediator. The mediator has the role of a router, it centralizes
the logic to send and receive messages. Components of the
system send messages to the mediator rather than to the other
components; likewise, they rely on the mediator to send change
notifications to them [36]. The implementation of this pattern
greatly simplifies the other classes in the system; components
are more generic since they no longer have to contain logic to
manage communication with other components. Because other

378

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

@prefix af: <http://www.isr.umd.edu/family#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships

[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y),(?a rdf:type ?x) -> (?a rdf:type ?y)]

// Rule 02: Family rules

[Family: (?x rdf:type af:Family) (?x af:hasFamilyMember ?y) -> (?y af:belongsToFamily ?x)]

// Rule 03: Identify a person who is also a child

[Child: (?x rdf:type af:Person) (?x af:hasAge ?y) lessThan(?y, 18) -> (?x rdf:type af:Child)]
[UpdateChild: (?x rdf:type af:Child) (?x af:hasBirthDate ?y) getAge(?y,?b) ge(?b, 18) -> remove(0)]

// Rule 04: Identify a person who is also a student

... Student rules removed ...

// Rule 05: Compute and store the age of a person

[GetAge: (?x rdf:type af:Person) (?x af:hasBirthDate ?y) getAge(?y,?z) -> (?x af:hasAge ?z)]

[UpdateAge: (?a rdf:type af:Person) (?a af:hasBirthDate ?b) (?a af:hasAge ?c)
getAge(?b,?d) notEqual(?c, ?d) -> remove(2) (?a af:hasAge ?d)]

// Rule 05: Set father-son and father-daughter relationships

[SetFather01: (?f rdf:type af:Male) (?f af:hasSon ?s)-> (?s af:hasFather ?f)]
[SetFather02: (?f rdf:type af:Male) (?f af:hasDaughter ?s)-> (?s af:hasFather ?f)]

Figure 15. Abbreviated list of Jena rules for transformation of the Family Semantic Model.

components remain generic, the mediator has to be application
specific in order to encapsulate application-specific behavior.
One can reuse all other classes for other applications, and only
need to rewrite the mediator class for the new application.

H. Working with Apache Camel

Looking to the future, we envision a full-scale implemen-
tation of distributed behavior modeling (see Figure 1) having
to transmit a multiplicity of message types and content, with
the underlying logic needed to deliver messages possibly being
a lot more complicated than send message A in domain B to
domain C. In our preliminary work [1] the mediator capability
was simplified in the sense that domain interfaces were as-
sumed to be homogeneous. But looking forward, this will not
always be true. Cities are transitioning from an industrial- to
information-age fabric, where highly efficient communication
networks are employed to minimize the importance of time
constraints and relieve the need for urban congestion. Infor-
mation and Communication Technologies (ICT) have become
a significant part of information-age cities. ICT can be found at
many levels, ranging from the collection of data from ordinary
daily tasks (e.g. traffic monitoring), to informing managerial
tasks that involve decision-making based on the monitored data
(e.g. electricity and water management; education and health;
climate change monitoring) [37]. Typically, each of the smart
systems and sensors has specific requirements, processes and
outputs. The flow and variety of urban data captured by these
smart systems and sensors is only going to grow and diversify

in years to come. This situation points to a strong need for
new approaches to the construction and operation of message
passing mechanisms.

One promising approach that we will explore in this work
is Apache Camel [8] [9], an open source Java framework
that focuses on making Enterprise Integration Patterns (EIP)
accessible through carefully designed interfaces, base objects,
commonly needed implementations, debugging tools and a
configuration system. It joins together messaging start and
end points, allowing for the transferring of messages from
different sources to different destinations. Figure 18 shows,
for example, a platform infrastructure for behavior modeling of
three connected application (networked) domains. In addition
to basic content-based routing, Apache Camel provides support
for filtering and transformation of messages. The latter is an
essential feature to future cities, where heterogeneous domain
interfaces will need to produce and consume messages that are
not always in the same language or format.

A project developed in 2015 by Abdellatif Bouchama has
successfully implemented Apache Camel for data transfer in
an urban scenario. The project demonstrates how to improve
urban air quality by gathering real time data from cities
in France, and adding value to it by using Apache Camel
to process the data and notifying users of the system [38].
Apache Camel can also be congured to receive data from
Twitter, Facebook, Open Weather Map and many other web
environments [39] of interest to an urban model. A study

379

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

@prefix af: <http://www.isr.umd.edu/school#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships

... Class hierarchy rules removed ...

// Rules 02: Elementary school rules

[EnterElementarySchool: (?x rdf:type af:Student) (?y rdf:type af:ElementarySchool)
(?x af:hasBirthDate ?a) getAge(?a,?b) ge(?b, 6) le(?b, 10) ->
(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)]

[LeaveElementarySchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)
(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)
getAge(?a,?b) ge(?b, 10) -> remove(2)]

[GradeOne: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)
getAge(?a,?b) equal(?b, 6) -> (?x af:isInGrade af:Grade01)]

... Rules for Grades 2 through 5 removed ...

// Rules 05: If today is report period, send school report

[GenerateReport: (?x rdf:type af:Event) (?y rdf:type af:Student) (?z rdf:type af:School)
(?z af:hasStudent ?y) (?x af:hasStartTime ?t1) (?x af:hasEndTime ?t2) getToday(?t3)
lessThan(?t3,?t2) greaterThan(?t3,?t1) -> (?y af:hasReport af:True)]

// Rules 06: School transporation service rules

[ESTransportationService: (?x rdf:type af:Student) (?y rdf:type af:ElementarySchool)
(?y af:hasStudent ?x) (?x af:hasStudentAddress ?k) (?y af:hasSchoolAddress ?z)
(?k af:hasLatitude ?l1) (?k af:hasLongitude ?l2) (?z af:hasLatitude ?l3) (?z af:hasLongitude ?l4)
getDistance(?l1,?l2,?l3,?l4,?d) greaterThan(?d,1000) -> (?x af:isElegibleForSchoolBus af:True)]

// Rules 07: If bus is late, send alert to parents

[DelayAlert: (?x rdf:type af:School)(?y rdf:type af:Bus)(?z rdf:type af:Student) (?x af:hasBus ?y)
(?y af:hasArrivalTime ?t) greaterThan(?t,"2020-09-20T03:00:00"ˆˆxsd:dateTime)
(?x af:hasStudent ?z) (?z af:isElegibleForSchoolBus af:True) -> (?z af:willArriveLate af:True)]

Figure 16. Abbreviated list of Jena rules for transformation of the School Semantic Model. Middle and high school rules for grade assignment and use of
transportation services are not shown.

performed in 2017 by Oliveira et al., investigated the use of an
intelligent middleware, containing Apache Camel, to support
data capture and analysis techniques to inform urban planning
and design. Results were reported from a “Living Campus”
experiment at the University of Melbourne, Australia, focused
on a public learning space case study. Local perspectives,
collected via crowd sourcing, are combined with distributed
and heterogeneous environmental sensor data [37].

I. Extension 1: Using Apache Camel as a Mediator

In the first extension, communication among the family
and school communities is handled by a mediator built using
Apache Camel. Figure 9 is the network setup for three families
interacting with elementary, middle and high schools. Every
component of the system (i.e., families and schools) register in
a JDNI Registry as bean components. Once a family member
reaches a certain age, the age rules associated with the family
system will trigger a school enrollment form to be sent to the
mediator in the form of an XML file, with source, subject and
destination attributes. The mediator logic routes the message
according to its content, more specifically the destination

attribute value and sends it to the matching bean in the registry.
Similarly, once the system calendar reaches a certain date, the
reporting rules associated with the school system will trigger
a school report to be sent to the mediator. The messaging
design allows the school enrollment form to be received only
by the school of interest, and not broadcasted to the entire
school system. Likewise, this design allows the school reports
to be sent only to the student’s family. This mediator logic
design is known as point-to-point channel, and it ensures that
only one listener consumes any given message. The channel
can have multiple listeners that consume multiple messages
concurrently, but the design ensures that only one of them
can successfully consume a particular message. Using this
approach, listeners do not have to coordinate with each other;
coordination could be complex, create a lot of communication
overhead, and increase coupling between otherwise indepen-
dent receivers.

J. Extension 2: Failure Simulation

The second case study extension examines computational
support for simulating failures in the distributed system oper-

380

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

@prefix af: <http://www.isr.umd.edu/family#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rules 01: Children of age 4 and 5 attend preschool

[EnterPreSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a) getAge(?a,?b) ge(?b, 4)
le(?b, 5) -> (?x af:attendsPreSchool af:True)]

[LeavePreSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a) (?x af:attendsPreSchool af:True)
getAge(?a,?b) ge(?b, 6) -> remove(2)]

// Rules 02: Children aged 6 through 10 attend elementary school

... Rules for attending Elementary school removed ...

// Rules 03: Children aged 11 through 13 attend middle school

... Rules for attending Middle school removed ...

// Rules 04: Children aged 14 through 17 attend high school

... Rules for attending High school removed ...

// Rules 05: Children aged 6 through 18 attend regular school

... Rules for attending school removed ...

Figure 17. Jena rules for family-school system interactions at the preschool level. Rules for interactions among elementary, middle, and high schools and
families are not shown.

ation. As already noted in Section I, complex urban systems
always run on degraded mode, which means at some point
failure and loss of urban system functionality is an inevitable
fact. A resilient urban system recovers quickly and continues
operating. In order to show how the architecture proposed
by this work can contribute to a resilient complex system
design, we introduce failure within the family and schools
interaction simulation. The school rules defines which students
are eligible for school bus service (a spatial decision), and
by what time such students should be delivered back to their
parents after school (a temporal schedule). Now imagine that a
school bus is running late. The boolean property willArriveLate
will be set to True. The school’s semantic model interface will
identify the corresponding update to the semantic graph, and
in response, send an alert to the families of students in the
late bus in the form of a message. The mediator will match the
message destination, with each of the families’ semantic model
interface and forward the message. The family semantic model
interface will identify the message type (i.e., late bus alert),
and could potentially trigger changes to the semantic model
graph to accommodate their own schedule. While this urban
scenario seems urealistically simple, it captures the essense of
safety and security concerns facing young urban residents. If
communication among the participating parties is not handled
properly and in a timely manner, uncertainties in situational
awareness can easily trigger the involvement of other related
systems, such as the police department.

VII. DISCUSSION

Our vision for future (more advanced) uses of Apache
Camel in behavior modeling of urban environments is focused
on its ability to integrate interfaces from multiple disciplines

that may not speak and understand the same language. Today,
Civil Engineers are faced with the challenge of designing
systems that transmit and consume a multiplicity of message
types and content. Looking into the future, this challenge
will be aggravated by the growth of ICT presence in urban
settings. Apache Camel avoids vulnerabilities introduced by
the growing flow and variety of urban data being transmitted,
and allows for more resilient message passing mechanisms in
urban scenarios.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has focused on the design and preliminary
implementation of a message passing infrastructure needed to
support communication in many-to-many association relation-
ships connecting domain-specific networks.

Our long-term research objective is computational sup-
port for the design, simulation, and validation of models of
distributed behavior in real-world urban environments. The
family-school distributed behavior model is merely a starting
point. We anticipate that the end-result will look something
like Figure 2, and provide strategies for real-time control of
behaviors, assessment of domain resilience, and planning of
recovery actions in response to severe events. Models of urban
data and system state will be coupled to tools for spatial
and temporal reasoning, and will synchronize with layers of
domain-specific visualization (not shown in Figure 2). In order
to drive the design and validation of domain rules, and rules
for exchange of messages between domains, we will design
and simulate a series of progressively complicated urban case
study problems.

Our future work will investigate opportunities for linking

381

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

among Networked Domains.

Mechanisms for Message Transmisson and Processing in Apache Camel.

Message
Endpoint

Ch
an

ne
l

Neworked Domain 2Networked Domain 1

Message
Endpoint

Ch
an

ne
l

Ch
an

ne
l

Message
Endpoint

Networked Domain 3

Distributed System Behavior Modeling

Import
Intelligent Routing of Messages

Platform Infrastructure for

Message−based Routing

Content−based Routing

Message−based Translation

Message Filtering

Figure 18. Platform infrastructure for distributed behavior modeling and intelligent communication (message passing) among networked domains.

of our simulation framework to tools for optimization and
trade-off analysis. Such tools would allow decision makers
to examine the sensitivity of design outcomes to parameter
choices, understand the impact of resource constraints, un-
derstand system stability in the presence of fluctuations to
modeling parameter values, and potentially, even understand
emergent interactions among systems.

Lastly, a potential extension to the presented work, is in the
development of ontologies. As it is presented in this work, the
construction of ontologies is based on the data available from
the XML datafiles, but this process is done manually. When
modeling complex urban systems, this approach may become
troublesome. A necessary step forward would be to implement
Natural Language Processing (NLP) for the semi-automated
identification of knowledge provided by the datafiles.

REFERENCES

[1] M. Coelho, M.A. Austin, and M. Blackburn, “Distributed System
Behavior Modeling of Urban Systems with Ontologies, Rules and
Many-to-Many Association Relationships,” The Twelth International
Conference on Systems (ICONS 2017), April 23-27 2017, pp. 10–15.

[2] M. A. Austin, P. Delgoshaei, and A. Nguyen, “Distributed Systems
Behavior Modeling with Ontologies, Rules, and Message Passing Mech-
anisms,” in Thirteenth Annual Conference on Systems Engineering
Research (CSER 2015), Hoboken, New Jersey, March 17-19 2015, pp.
373–382.

[3] S.M. Rinaldi, J.M. Peerenboom, and T.K. Kelly, “Identifying, Un-
derstanding, and Analyzing Critical Infrastructure Interdependencies,”
IEEE Control Systems Magazine, vol. 21, December 2001, pp. 11–25.

[4] S. Selberg, and M.A. Austin, “Toward an Evolutionary System of
Systems Architecture,” in 18th Annual International Symposium of The
International Council on Systems Engineering (INCOSE 2008), Utrecht,
The Netherlands, July 15-19 2008.

[5] R. I. Cook, “How Complex Systems Fail.” Cognitive Technologies
Laboratory, University of Chicago, Chicago IL., 1998.

[6] J. Gao, X. Liu, D. Li, and S. Havlin, “Recent Progress on the Resilience
of Complex Networks,” Energies, vol. 8, 2015, pp. 12 187–12 210.

[7] OptaPlanner (2016), A Constraint-Satisfaction Solver. For details, see:
https://www.optaplanner.org (Accessed, Jan 4., 2017).

[8] C. Ibsen, J. Antsey, and Z. Hadrian, Camel in Action. Manning
Publications Company, 2010.

[9] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building and Deploying Message Passing Solutions. Addison Wesley,
2004.

[10] T. Berners-Lee, J. Hendler, and O. Lassa, “The Semantic Web,” Scien-
tific American, May 2001, pp. 35–43.

[11] P. Delgoshaei, M. A. Austin, and D. A. Veronica, “A Semantic Platform
Infrastructure for Requirements Traceability and System Assessment,”
The Ninth International Conference on Systems (ICONS 2014), Febru-
ary 2014, pp. 215–219.

[12] P. Delgoshaei, M. A. Austin, and A. Pertzborn, “A Semantic Framework
for Modeling and Simulation of Cyber-Physical Systems,” in Interna-
tional Journal On Advances in Systems and Measurements, Vol. 7, No.
3-4, December, 2014, pp. 223–238., 2014.

382

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] C.A. Myers, T. Slack, and J. Singelmann, “Social Vulnerability and
Migration in the Wake of Disaster: The case of Hurricanes Katrina and
Rita,” Population and Environment, vol. 29, 2008, pp. 271–291.

[14] R. Zimmerman and C. E. Restrepo, “Analyzing Cascading Effects
within Infrastructure Sectors for Consequence Reduction.” 2009 IEEE
International Conference on Technologies for Homeland Security, HST
2009, Waltham, MA. , 2009.

[15] Association of Bay Area Governments (ABAG), “Water System and
Disasters.” 2009-2010 Update of the ABAG-Led Multi-Jurisdictional
Local Hazard Mitigation Plan for the San Francisco Bay Area, 2009.

[16] M. Hogan, “Anytown: Final Report.” London Resilience Team,
London, England, 2013.

[17] C. Robert T. Marsh, “Critical foundations: Protecting america’s
infrastructures - the report of the president’s commission on
critical infrastructure protection,” Tech. Rep., October 1997. [Online].
Available: https://www.fas.org/sgp/library/pccip.pdf

[18] P. Pederson, D. Dudenhoeffer, S. Hartley, and M. Permann,
“Critical infrastructure interdependency modeling: A survey of us and
international research,” Tech. Rep., August 2006. [Online]. Available:
https://inldigitallibrary.inl.gov/sites/sti/sti/3489532.pdf

[19] H. Rahman, M. Armstrong, D. Mao, J. Marti, “I2Sim: A matrix-
partition based framework for critical infrastructure interdependencies
simulation,” IEEE Canada Electric Power Conference, 2008, pp. 1–8.

[20] G. Falquet, C. Metral, J. Teller, and C. Tweed, Ontologies in Urban
Development Projects. Springer, 2005.

[21] “OpenGIS Geography Markup Language Encoding Standard (GML).
See http://www.opengeospatial.org/standards/gml (Accessed December
1, 2017).”

[22] D. Bonino, and F. Corno, DogOnt - Ontology Modeling for Intelligent
Domotic Environments. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008, pp. 790–803.

[23] M. A. Austin and J. S. Baras, An Introduction to Information-Centric
Systems Engineering. Toulouse, France: Tutorial F06, INCOSE, June
2004.

[24] M. A. Austin, V. Mayank, and N. Shmunis, “Ontology-Based Valida-
tion of Connectivity Relationships in a Home Theater System,” 21st
International Journal of Intelligent Systems, vol. 21, no. 10, October
2006, pp. 1111–1125.

[25] ——, “PaladinRM: Graph-Based Visualization of Requirements Orga-
nized for Team-Based Design,” Systems Engineering: The Journal of
the International Council on Systems Engineering, vol. 9, no. 2, May
2006, pp. 129–145.

[26] N. Nassar and M. A. Austin, “Model-Based Systems Engineering
Design and Trade-Off Analysis with RDF Graphs,” in 11th Annual
Conference on Systems Engineering Research (CSER 2013), Georgia
Institute of Technology, Atlanta, GA, March 19-22 2013, pp. 216–225.

[27] Q.H. Mahmoud, “Getting started with the Java Rule
Engine API (JSR 94): Toward Rule-Based Applications,”
Sun Microsystems, 2005, For more information, see
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
(Accessed, March 10, 2008).

[28] G. Rudolf, “Some Guidelines For Deciding Whether To Use A
Rules Engine,” 2003, Sandia National Labs. For more information
see http://herzberg.ca.sandia.gov/guidelines.shtml (Accessed, March 10,
2008).

[29] Apache Jena:, “An Open Source Java framework for building
Semantic Web and Linked Data Applications. For details, see
https://jena.apache.org/,” 2016.

[30] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,” Com-
munications of the ACM, vol. 26, no. 11, 1983, pp. 832–843.

[31] ——, “Towards a General Theory of Action and Time,” Artificial
Intelligence, vol. 23, no. 2, 1984, pp. 123–154.

[32] D.A. Randell, Z. Cui, and A.G. Cohn, “A Spatial Logic based on
Regions and Connectivity,” 1994, Division of Artificial Intelligence,
School of Computer Studies, Leeds University.

[33] Java Topology Suite (JTS). See http://www.vividsolutions.com/jts/ (Ac-
cessed August 4, 2017).

[34] White House (2003), The National Strategy for the Physical Protection
of Critical Infrastructures and Key Assets. Washington, DC.

[35] T. W. H. Boyes, R. Isbell, “Critical infrastructure in the future city
- developing secure and resilient cyber-physical systems,” in Critical
Information Infrastructures Security - 9th International Conference,
CRITIS 2014, Limassol, Cyprus, October 13-15, 2014, Revised Selected
Papers, 2014, pp. 13–23.

[36] S. Stelting and O. Maassen, Applied Java Patterns. SUN Microsystems
Press, Prentice-Hall, 2002.

[37] E.A. Oliveira, M. Kirley, T. Kvan, J. Karakiewicz, and C. Vaz, Dis-
tributed and Heterogeneous Data Analysis for Smart Urban Planning.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 37–54.

[38] A. Bouchama, The IoT in the Service of the Environment using Apache
Camel & JBoss A-MQ. For details, see: http://bushorn.com/iot-service-
environment-using-apache-camel-jboss-mq/ (Accessed, Jul 1., 2017).

[39] Apache Camel (2017), Components Included. For details, see:
http://camel.apache.org/components.html (Accessed, Jul 1., 2017).

