
 

Available online at www.sciencedirect.com 

ScienceDirect	  
Procedia Computer Science 00 (2015) 000–000  

  www.elsevier.com/locate/procedia 

 

1877-0509 © 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of Stevens Institute of Technology. 

2015 Conference on Systems Engineering Research 

Distributed System Behavior Modeling with Ontologies, Rules, and 
Message Passing Mechanisms 

Mark Austin, Parastoo Delgoshaei, and Alan Nguyen* 
Associate Professor, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA 

Graduate Student, Ph.D. Program in Civil Systems, Department of Civil and Environmental Engineering, University of Maryland, College Park, 
MD 20742, USA. Systems Engineer, Constellation Energy, Washington D.C. 

Abstract 

Modern societal-scale infrastructures (e.g., buildings, roads, railways, and power supplies) that are defined by spatially 
distributed network structures, concurrent subsystem-level behaviours, distributed control and decision making, and 
interdependencies among subsystems that are not always well understood. During both Hurricanes Katrina and Sandy, it quickly 
became evident a disturbance in one system can impact other networks in ways that are both unexpected and undesirable. Such 
outcomes put engineering designers and urban planners (decision makers) in a tough spot where quantitative decision-making 
regarding the adequacy of system infrastructure is complicated by the presence of newfound system interactions. This paper takes 
a first step toward providing designers and planners with computational support for simulation of distributed system behaviours 
with system-level interactions. We describe an experimental software prototype for distributed event-based system behaviour 
modelling with ontologies, rules checking and message passing mechanisms.  Key features of the software architecture are 
demonstrated through the development of two scenarios: (1) A family interacting with a school system, and (2) Simulation of 
adjustments to the Washington DC Metro System schedule in response to a severe storm. 
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1. Problem Statement 

     One of the important outcomes of remarkable advances in computing and communications (especially over the 
past twenty five years) is the way in which they have opened doors to the design and management of new types of 
systems that have superior levels of performance, extended functionality and good economics. While end-users 
applaud, model-based systems engineers are faced with a multitude of new design challenges that can be traced to 
the presence of heterogeneous content (multiple disciplines; multiple physics), network structures that are spatial, 
multi-layer, interwoven and dynamic, and behaviors that are distributed and concurrent. These characteristics are 
found in a wide range of modern systems -- planes, trains, and automobiles, buildings, large urban environments, 
even biological and environmental systems – and they make design a lot more difficult than it used to be. 
 
      In a decentralized system structure, no decision maker knows all of the information known to all of the other 
decision makers, yet as a group, they must cooperate to achieve system-wide objectives. Communication and 
information exchange are important to the decision makers because communication establishes common knowledge 
among the decision makers which, in turn, enhances the ability of decision makers to make decisions appropriate to 
their understanding, or situational awareness, of the system state, it’s goals and objectives. While each of the 
participating disciplines may have a preference toward operating their domain as independently as possible from the 
other disciplines, achieving target levels of performance and correctness of functionality nearly always requires that 
disciplines coordinate activities at key points in the system operation. And even if the resulting cross-domain 
relationships are only weakly linked, they are nonetheless, still linked. When part of a system fails, there exists a 
possibility that the failure will cascade across interdisciplinary boundaries. During Hurricanes Katrina and Sandy, 
for example, it quickly became evident a disturbance in one system (e.g., rising sea level) can impact other networks 
(e.g., transportation and electrical networks) in ways that are unexpected, undesirable, and very costly.  The 
underlying tenet of our research is that in order to understand how such failures might be best managed (or 
contained), we need as a prerequisite, the ability to model the exchanges of data and information at the disciplinary 
boundaries and to model their subsequent impact within the disciplinary boundaries.  
 
    The objectives of this paper are to explore this opportunity. After explaining the relationship of ontologies and 
rules to our related work in model-based systems engineering, we describe the software architecture for an 
experimental platform for assembling ensembles of community graphs and simulating their discrete, event-based 
interactions. We employ the Jena API [1] for the development of ontologies and Jena Rules for the rule definition 
and representation of domain-specific constraints. In this setup, each ontology is paired with an interface for 
communication with other ontologies and hosts a set of domain specific rules as well as the system interaction rules. 
Key features of the software architecture are demonstrated through the development of two scenarios: (1) A family 
interacting with a school system, and (2) Simulation of adjustments to the Washington DC Metro System schedule 
in response to a severe storm. Our long-term research objective is to use this framework as a stepping-stone to the 
study of problems involving simulation of behavior in cities and cascading system failures that occur as the result of 
extreme external events. 
 
2.  Background to Ontologies and Rules 
 
     Fig. 1 illustrates the appeal of behavior modeling with ontologies and rules. The upper right-hand side of the 
figure shows the relationship among classes and properties in a simplified family ontology. A person has properties: 
hasAge, hasWeight, and hasBirthDate. Male and Female are subclasses (specializations) of class Person. Boy is a 
specialization of Male. A Child is a Person who may (or may not) attend Preschool. The upper left-hand side of Fig. 
1 shows one fact and three rules. Sam is a boy born October 1, 2007. Given a birthdate and a current time, a built-in 
function getAge() compute’s Sam’s age. Further rules can be defined for when a person is also a child and when 
children attend Preschool. The schematic along the bottom of Fig. 1 shows the evolution of a graph defining the 
properties of Sam as a function of time. Some of the data (e.g., Sam’s birthdate) remains constant over time. Other 
data (e.g., such as whether or not Sam attends preschool) is dynamic and is controlled by the family rules.  
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Fig. 1. Simplified framework for modeling with ontologies and rules 

        From a systems engineering standpoint, this scenario is appealing because it suggests an opportunity for 
modeling systems behavior and structure with graphs that dynamically evolve in response to events.  However the 
scenario is overly simplistic in the sense that Rules 2 and 3 are presented as part of the family, whereas in reality  
they are defined by the school system. This observation suggests that instead of modeling the dynamic behavior of 
systems with centralized control and one large catch-all ontology, we really need to explore mechanisms for 
modeling networks of discipline-specific (or community) networks. Each community will have a graph that evolves 
according to a set of community-specific rules, and subject to satisfaction of constraints. Communities will interact 
when then need to in order to achieve system-level objectives (e.g., put school-age children on a pathway to a good 
education). If goals are in conflict, or resources are insufficient, then negotiation will need to take place. 
 
3.  Related Work in Model-Based Systems Engineering 
 
     Model-based systems engineering (MBSE) development is an approach to systems-level development in which 
the focus and primary artifacts of development are models, as opposed to documents. A tenet of our work is that 
methodologies for strategic approaches to design will employ semantic descriptions of application domains, and use 
ontologies and rule-based reasoning to enable validation of requirements, automated synthesis of potentially good 
design solutions, and communication (or mappings) among multiple disciplines [2-4]. A key element of required 
capability is an ability to identify and manage requirements during the early phases of the system design process, 
where errors are cheapest and easiest to correct.  
 
     The systems architecture for state-of-the-art requirements traceability and the proposed platform model is shown 
in the upper and lower sections of Fig. 2. In state-of-the-art traceability mechanisms design requirements are 
connected directly to design solutions (i.e., objects in the engineering model). Our contention is that an alternative 
and potentially better approach is to satisfy a requirement by asking the basic question: What design concept (or 
group of design concepts) should I apply to satisfy a requirement? Design solutions are the 
instantiation/implementation of these concepts. The proposed architecture is a platform because it contains  
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Fig. 2. Schematic for: (top) state-of-the-art traceability, and (bottom) proposed model for ontology-enabled traceability for systems design and 
management. 

 

Fig. 3.   Framework for the implementation of ontology-enabled traceability and design assessment. 

collections of domain-specific ontologies and design rules that will be reusable across applications. In the lower half 
of Fig. 2, the textual requirements, ontology, and engineering models provide distinct views of a design: (1) 
Requirements are a statement of ``what is required.'' (2) Engineering models are a statement of ``how the required 
functionality and performance might be achieved,'' and (3) Ontologies are a statement of ``concepts justifying a 
tentative design solution.'' During design, mathematical and logical rules are derived from textual requirements, 
which, in turn, are connected to elements in an engineering model. Evaluation of requirements can include checks 
for satisfaction of system functionality and performance, as well as identification of conflicts in requirements 
themselves. A key benefit of our approach is that design rule checking can be applied at the earliest stage possible -- 
as long as sufficient data is available for the evaluation of rules, rule checking can commence; the textual 
requirements and engineering models need not be complete. During the system operation, key questions to be 
answered are: What other concepts are involved when a change occurs in the sensing model? What requirement(s) 
might be violated when those concepts are involved in the change? To understand the inevitable conflicts and 
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opportunities to conduct trade space studies, it is important to be able to trace back and understand cause-and-effect 
relationships between changes at system-component level and their affect on stakeholder requirements. Present-day 
systems engineering methodologies and tools, including those associated with SysML [5] are not designed to handle 
projects in this way. 
 
      Fig. 3 pulls together the different pieces of the proposed architecture shown in Fig 2. On the left-hand side the 
textual requirements are defined in terms of mathematical and logical rule expressions for design rule checking. 
Engineering models will correspond to a multitude of graph structure and composite hierarchy structures for the 
system structure and system behavior. Behaviors will be associated with components. Discrete behavior will be 
modeled with finite state machines. Continuous behaviors will be represented as the solution to ordinary and partial 
differential equations. Ontology models and rules will glue the requirements to the engineering models and provide 
a platform for simulating the development of system structures, adjustments to system structure over time, and 
system behavior. This is a work in progress [6]. 
 
4.  Experimental Architecture for Distributed System Behaviour Modelling 
 
     Fig. 4 shows the software architecture for distributed system behavior modeling for collections of graphs that 
have dynamic behavior defined by ontology classes, relationships among ontology classes, ontology and data 
properties, listeners, and message passing mechanisms. The abstract ontology model class contains concepts 
common to all ontologies (e.g., the ability to receive message input). Domain-specific ontologies are extensions of 
the abstract ontology classes. They add a name space and build the ontology – classes, relationships among classes, 
properties of classes – for the domain. Instances (see Fig. 3) are semantic objects in the domain. 
 

 

Fig. 4. System architecture for distributed system behavior modeling with ontologies, rules, and message passing mechanisms. 

By themselves, the ontologies provide a framework for the representation of knowledge, but otherwise, cannot do 
much and really aren’t that interesting. This situation changes when domain-specific rules are imported into the 
model and graph transformations are enabled by formal reasoning and event-based input from external sources. 
Simulations of the type illustrated in Fig. 1 can be accomplished with a single semantic model, a single set of rules, 
and a clock that marches forward in time. Distributed behavior modeling involves multiple sematic models, multiple 
sets of rules, mechanisms of communication among semantic models, and data input, possibly from multiple 
sources. We provide this functionality in our distributed behavior model by loosely coupling each semantic model to 
a semantic interface. Each semantic interface listens for changes to the semantic domain graph and when required, 
forwards the essential details of the change to interfaces that have registered interest in receiving notification of such 
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changes. They also listen for incoming messages from external semantic models. Since changes to the graph 
structure are triggered by events (e.g., the addition of an individual; an update to a data property value; a new 
association relationship among objects), a central challenge is design of the rules and ontology structure so that the 
interfaces will always be notified when exchanges of data / information need to occur. Individual messages are 
defined by their type (e.g., MessageType.miscellaneous) and a reference to the value of the data being exchanged. 
The receiving interface will forward incoming messages to the semantic model, which, in turn, may trigger an 
update to the graph model. Since the basic message passing infrastructure is common to all semantic model 
interfaces, it makes sense to define it in an abstract ontology interface model. 
 
5.  Case Study Problems 
 
      The system architecture illustrated in Fig’s 3 and 4 open the door to many exciting opportunities for distributed 
rule-based systems simulation. But there are challenges. For example, in order for the domain specific systems to 
work nicely together, there has to be a degree of cooperation that involves exchange of messages. While each 
domain will not need to know everything about the other domains, it does need to know enough to enable data 
exchange. Cooperation among domains will be complicated if the semantics (e.g., choice of names for classes) are 
domain dependent. A second open question is as follows: Can the domains cooperate simply by exchanging 
messages? Will the system operate a lot more efficiently if they exchange messages, plus a small set of rules for 
how messages are to be triggered and interpreted?  
 
5.1.  Case Study A: Behavior Modeling for a Family-School System 
 
     To illustrate the capabilities of our experimental architecture, we now present the essential details of a simulation 
framework for the behavior modeling of a combined family-school system, defined by ontologies, rules, and 
exchange of information as messages.  
 

 

Fig. 5. Software architecture for distributed behavior modeling in the family – school system software prototype. 

Fig. 5 is an instantiation of the concepts introduced in Fig. 4 and shows the software architecture for a family-school 
interaction. We assume in this scenario that a family (i.e., mom, dad, and school-age children) chooses to enroll their 
children in a nearby school. As every parent knows, the decision to enroll your children in a school system resides 
with the family. The enrolment process involves the exchange of specific information, such as the name, birth date, 
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home address and social security number of each child. Then, once the child is accepted the school system takes 
over. They figure out what grade level is appropriate for each child, what classroom the child will be in, the 
schedule of learning activities, when the school year will begin, and when it will end. Parents are informed on the 
schedule for ``professional days’’ when, as a result, they need to make arrangements for childcare. If there is a delay 
in the school opening due to bad weather, parents will be informed, and adjustments to schedules need to be made. 
Thus, it is evident that comprehensive behavior modeling for a family-school system involves the exchange of 
information among family, school, weather and transportation systems. Decision making is distributed across the 
family, transportation and school systems, with dependency relationships defining pathways of cause-and-effect 
relationships cascading among systems.  
 

 
Fig. 6. Abbreviated Jena rule files for behavior modeling of the family, family-school system interface and school system. 

 
We assume in this case study that behavior modeling for each system will be explicitly defined by sets of rules 
governing graph transformations. Graph transformations can occur due to input (e.g., the family graph changes 
because they adopt a new child) or time (e.g., this time next year all of the family members will be one year older 
than today). Fig. 6 shows an abbreviated list Jena rules for behavior modeling of the family, the family-school 
system interface, and the school system. Notice that the family and school system rules operate under completely 
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different name spaces. The family-school interface is a small set of rules that a school system distributes to families 
informing them when a child is eligible to attend regular school. It is written in such a way that families will 
understand what to do. When a child turn six, the data property attendsElementarySchool will be added to the family 
graph. When this change is detected by the family interface, an enrollment form is filled out, and the child is off to 
school. 
 
5.2.  Case Study B: Modeling Weather-Transportation System Interactions 
 
     Now let us simulate the impact of an extreme weather event on a transportation system. For the weather event, 
we assume a heavy snowfall in the Washington D.C. metropolitan area. For the transportation system, we model a 
fragment of the Washington D.C. metro system.  
 

 

Fig. 7. Schematic of a weather system model impacting a simplified model of the Washington DC Metro System. 

The details of our scenario date back to January 1996, when Washington D.C. was battered by a severe winter storm 
that resulted in the several feet of snow. The Metro System provided continuous train service until a red line train 
with one hundred passengers got stuck for five hours near Takoma Park. To avoid a repeat of this calamity, now 
trains only operate below ground during snow storms. If a particular metro station needs to be closed due to 
excessive snow, then all of the neighboring stations along the line also need to be shut down. 
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Fig. 8. Abbreviated Jena rules for the weather system, metro transportation system, and the weather – transportation interface. 

        Fig. 7 illustrates the impact of the notifications originating in the weather system model on a simplified model 
of the Washington, DC. Metro system. The upper part of the figure shows ontology graphs populated with 
individuals. Specfically, ``CollegePark” is an individual from class “Station” with an object property, “hasNext”, 
and Boolean data properties “isClosed”, “isTerminal”.  The lower half of the figure shows how a change to the 
weather graph model, a snow event, propagates to the metro graph via ontology interface models. Fig. 8 displays an 
abbreviated list of Jena rules for the weather system, metro transportation system, and weather-transportation 
interface. The ``hasNext” property can be used to infer chains of adjacent stations. The weather – transportation 
rules define conditions for when a specific above ground station should be closed.  
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       With the ontology and rules in place, the interaction of the weather and transportation systems occurs through a 
sequence of events and data propagations. First, the weather ontology receives a change in its data that “College 
Park” site has snow accumulation of 25 inches. The graph listener, implemented in weather interface model, 
receives this change and sends a message, along with College Park weather report to the Metro Interface Model. 
Next, the Metro Interface Model alters the metro ontology graph. The transportation system reasoner will perform 
reasoning and new inference data will be inserted into the graph. In this particular case, not only is the College Park 
station closed, but all of the adjacent (above ground) stations will be closed as well.  
 
       A more comprehensive example would include ontologies and rules for the metro system scheduler and 
individual trains. Rules for system interaction would cover scheduler-train communications, scheduler-weather 
systems interactions, and metro train behaviors. Under this problem setup, we ought to be able to constrain the trains 
to operate in only in sections of the track having underground stations. This is a work in progress. 
 
7. Conclusions 
  
       Our long-term research objective is to use this framework as a stepping-stone to the study of problems involving 
simulation of behavior in complex systems, and studies of cascading system failures that occur as the result of 
extreme external events. The design and management of energy-efficient buildings and modern urban areas are our 
current target areas of interest. This paper has focused on the design and implementation of a semantic infrastructure 
(and associated rule processing) to support this effort. While the underlying graph representations are discrete, as 
illustrated along the right-hand side of Fig. 3., real-world systems have behaviors defined by mixtures of discrete 
and continuous behaviors. Our future work will include investigation of opportunities for linking discrete-
continuous behaviors through the use of libraries of built-in functions within the Jena rules. In the family-school 
application, this is how the getAge() function is computed, and there seems to be no reason why it cannot be scaled 
up. A second important topic for future work is linkage of our simulation framework to tools for optimization and 
tradeoff analysis. Such tools would allow decision makers to examine the sensitivity of design outcomes to 
parameter choices, understand the impact of resource constraints, understand system stability in the presence of 
fluctuations to modeling parameter values, and potentially, even understand emergent interactions among systems. 
In this paper we have exercised the proposed framework with a scenario that involves an environmental system 
impacting an urban system. However, the framework could also be used to identify and understand ways in which 
large urban areas are impacting the local environment and causing changes to the global climate. 
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