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Abstract 

Our work is concerned with the development of Model-Based Systems Engineering (MBSE) procedures for the 
behavior modeling and design of Cyber-Physical Systems. This class of problems is defined by a tight integration of 
software and physical processes, the need to satisfy stringent constraints on performance, safety and a reliance on 
automation for the management of system functionality. To assure correctness of functionality with respect to 
requirements, there is a strong need for methods of analysis that can describe system behavior in terms of time, 
intervals of time, and relationships among intervals of time. Accordingly, this paper discusses temporal semantics 
and their central role in the development of a new time-based reasoning framework in MBSE for CPS. Three 
independent but integrated modules compose the system: CPS, ontology and time-reasoning modules. This approach 
is shown to be mostly appropriate for CPS for which safety and performance are dependent on the correct time-
based prediction of the future state of the system. A Python-based prototype implementation has been created to 
demonstrate the capabilities of the ontological framework and reasoning engine in simple CPS applications. 
© 2013 The Authors. Published by Elsevier B.V. 
 Selection and/or peer-review under responsibility of Georgia Institute of Technology. 
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1. Introduction 

This paper examines temporal semantics and their use in reasoning when cyber-physical system behavior, safety, 
and performance are dependent on correct time-based predictions of future system state. The central role ontologies 
can play in capturing and formally representing the time domain is discussed. We review temporal theories and 
Description Logic (DL) semantics backing decidability of our time reasoning system. The latter makes uses of 
Allen’s interval calculus algebra, and temporal relationships to support the reasoning about time and time intervals. 
We develop and propose use of a three-part CPS architecture that supports physical behavior modeling, the 
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ontologies, and temporal reasoning. Our time-based reasoning framework is applied to a problem that involves 
behavior modeling and decision making for a vehicle approaching a yellow traffic light. We will see that the time-
based reasoning approach improves the overall traffic system performance and safety. 

2. Ontologies of time and temporal semantics in MBSE for CPS 

2.1. Temporal theories 

Time is an English word with various meanings; a concept that is frequently used in linguistic statements and is a 
central theme in different domains from philosophy to physics passing by knowledge representation and reasoning 
[1]. This diversity of views of what “time” is has led to various models of its representation as ontology experts try 
to define a time vocabulary with an explicit specification of intended meanings. Hayes [2] identifies six main 
concepts of time which, fortunately, are related to one another – among this set we select four to support ontological 
representation of time in engineering. They are: 

1. Time-interval: pieces of time located on the temporal continuum (or time-plenum) serve as basic for the 
temporal theory  

2. Time-duration: constant amount of time that can be compared and are distinctive from the length of the 
time interval are used to define time. 

3. Time-point: the notion of a “point” in time supports this temporal theory; this concept is sometimes 
assimilated to the one of a “position in temporal coordinate system” which has no duration and is useful in 
locating event on the time-plenum.  

4. Time-dimension: time is considered a physical dimension such as length, mass or voltage, with unit and 
physical properties as specified by Gruber and Olsen [3].  

2.2. Ontologies of  time and time models 

Existing ontologies of time employ a combination of these four concepts, but are otherwise strongly influenced by 
the targeted need for which they were developed. For example, Hatala et al. [4] rely on a discrete time-space point 
model to store user paths in their real-time audio museum application. Gruninger [5] introduces time-point based 
axioms to support formalizing the Process Specification Language (PSL).  The time in this theory is based on totally 
ordered timepoints and it supports branches for possible futures . In OWL-Time [6], the time ontology based upon 
the Web Ontology Language (OWL), Instant and Interval are basic mereological individuals, serving as 
foundational temporal entities (see Fig 1.).  
 

:Instant 
a       owl:Class ; 
rdfs:subClassOf :TemporalEntity . 
:Interval 
a       owl:Class ; 
rdfs:subClassOf :TemporalEntity . 
:TemporalEntity 
a       owl:Class ; 
rdfs:subClassOf :TemporalThing ; 
owl:equivalentClass 
[ a       owl:Class ; 
owl:unionOf (:Instant :Interval)] . 

Fig. 1. Definition of instant, interval and temporal entity in OWL-Time 
 

As standalone entities, time ontologies are not of great interest as they do nothing more than providing a description 
of the time domain. Getting the most out of them requires their integration to either other ontologies or directly in 
applications or models. Unfortunately, the pathway forward is not as simple as one would like. First, augmenting 
existing ontologies with time lead to diachronic representations where time is the third argument added to initial 
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binary relations. Krieger [7] reviews three of the most relevant approaches and reinterprets a fourth one - the 4D 
view – using the notion of “time slice”b in an attempt to develop a general approach for equipping ontologies with 
time. Blom et al. [8] follow similar pathway by augmenting EASTADL2 and AUTOSAR models with timing 
information in specifying the semantics of age and reaction time appropriate for the automotive industry. In addition 
to expected increase in complexity of the RDF triple graph, the proliferation of objects of different types renders 
querying and reasoning with such approaches very painful. The proliferation of modelling languages also raises the 
issues of models consistency and interoperability. The OMG UML profile for modelling and analysis of real-time 
and embedded (MARTE) [9] systems not only tries to address this problem but it introduces a ``time-point’’ model 
of time with abstractions and concepts (e.g., delay, duration, causal/temporal, clocked/synchronous) appropriate for 
the analysis of real-time systems behaviour.  

2.3. Temporal semantics in CPS modeling 

Why we need temporal semantics in modeling CPS?    CPS are heterogeneous by nature, with time and concurrency 
intrinsic to the physical side but not necessarily relevant in the cyber world. Reconciling these differences makes 
CPS modeling, verification and validation particularly difficult. Also, as Derler indicates in [10], capturing and 
modeling Zeno behaviorc in CPS models, whether they are desired or not is very hard without sound temporal 
semantics. Another challenge is the modeling of distributed behaviors, which requires the composition of 
components that are both spatially and temporally distributed.  One illustration of the distributive nature of temporal 
components is the notion of time zone, which also applies to CPS. Delays are also intrinsic to CPS given their 
heterogeneity and distributed computational platforms. Eidson et al. [11] introduce PTIDES, a platform independent 
programming model for distributed systems based on time synchronization, which handles system delays but does 
not provide any reasoning capability. 

 
Common temporal semantics for CPS. The recent development of the Lingua Franca Design and Integration 
Language (LFDIL) [12], a common language for CPS modeling, participates to the goal of unifying relevant 
semantics in view of formal and full across domains integration, including the temporal domain. Denotational 
semantics rely on mathematical terms to provide meaning to time constructs. However, the temporal semantics used 
for modeling is dependent on the theoretical viewpoint adopted, for instance - time-duration or time-interval. Wang 
et al. [13] put temporal semantics based on Duration Calculus into the Architecture Analysis and Design Language 
(AADL) to support timing behavior modeling for CPS. Allen et al.[14] rely on temporal interval semantics and 
define an Interval Calculus to specify relations between intervals based on the identification of begin and end points 
as well as before relations. Before diving into how this is done let’s introduce the corresponding foundational logical 
theories.   

  
Description Logics (DL) semantics. Horrocks [15] defines DL are a family of logic based knowledge representation 
formalisms that describe domain in terms of concepts (classes in OWL), roles (properties, relationships) and 
individuals (objects). Universal ( ), existential ( ), intersection ( ), Union ( ) and negation (¬) operators are 
used for restriction specifications to make the language decidable with low complexity. In DL, semantics are defined 
by interpretations. An interpretation I  is defined as followed: 
I  = ( I,.I ), where  I   is the domain of interest (non-empty set) and ,.I  is an interpretation function that maps: 

o Concept name C : a subset CI  of  I 
o Role name R  : a binary relation RI  over I 

The interpretation function above extends to concept expressions as follows: 
 

 

b This is a reinterpretation of the notion of “Time-interval” introduced earlier. 
c Type of system behavior where infinitely many events occur in a finite time interval 
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 Concepts/relations          Interpretation (FOLd) 
           Expressions(DL) 
 

 
 

Concepts, roles and individuals build up to the DL knowledge base K <T, A>  of a domain D . Here, T is a set of 
terminological Tbox axioms and A  is a set of assertional Abox axioms. x,y are individual names. 

3. A time based reasoning framework for CPS  

Our time-based reasoning framework makes use of Allen’s interval calculus algebra and temporal relationships.  

3.1. Justification of our system 

For formal approaches to the verification of CPS to work, we need formal models to capture the appropriate 
granularity of time, considering its frequent under-specification in natural language expressions. For instance, 
consider the following expressions: (a) The last Olympics games started on July 27, and (b) In 2012, the Olympics 
games started in July. The absence of reference for a year for the chosen month (i.e., July) makes statement (a) 
underspecified. With the assumption that the month is the granularity of our time measurement, statement (b) is fully 
specified otherwise it could not be the case; for instance if, instead of month, the granularity of time is day. A 
number of researchers [16,17,18] have determined that interval-based models are more appropriate for formal 
analysis having time-dependent behavior than point-based models. In particular, interval-based temporal logics built 
over Allen’s Interval Algebra [17] or Moszkowski’s Interval Temporal Logic[18] appear as adequate choices to 
support practical temporal reasoning for the class of CPS systems with above-mentioned characteristics. However, 
it’s critical for intervals to be fully specified using the granularity of time implemented in the cyber part of the CPS. 
In this work, we adopt interval calculus approach, which assumes that all intervals are “proper” with a before 
relationship between their beginning and end instants, which are fully specified time points. One of the key 
benefices of this specification is the avoidance of situations where instances of time intervals are underspecified; 
that is, either its beginsAt and/or endsAt properties have no values or the assigned values are underspecified as 
noticed by Krieger [7]. Moreover, this allows the formulation of restricted axioms which, when expressed in an 
ontology language, will ensure that time reasoning is decidable.  

3.2. Allen’s Temporal interval Calculus and  OWL Time Ontology 

The strength of Allen’s interval algebra resides in its capability to manipulate interval and express temporal 
properties and their evolution over those intervals. At the core of this algebra is the relationship between time 
intervals. Thus, given two time intervals I1 and I2, a time-point t and a proposition   , we might ask a variety of 
questions over the time domain such as: (1) Mereological or “part-of”  questions (e.g., Is the interval I1 a sub-
interval of I2? Does t occur within I1? Is the interval I1 equals to I2?   What interval represents the temporal 
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intersection of I1 and I2?  Does interval I1 contains interval I2?); (2) Topological or “connects” questions (e.g., 
Does interval I1 happens before or after interval I2?  Do intervals I1 and I2 meet?  Do intervals I1 and  I2 start 
and/or end at the same instants? ) and (3) Logical or “rules-based” questions (e.g., Does the proposition     hold 
within the interval I1? If    holds during the interval I1 does it hold during I2 too? Does the proposition     hold 
before or after the interval I1?). Allen [17, 19] has identified and specified thirteen (13) relationships between any 
ordered pair of “convex” time intervals as the core of his Interval Algebra. The main seven (7) relationships are 
illustrated in Fig. 2 below; Six (6) inverse relations also exist. 

 

 
Fig. 2. Seven main relationships among intervals of time (as proposed by Allen). 

 
Hobbs & Pan [20] provide formal definitions of these interval relations in terms of before relations among their 
beginning and end points, which exist, given their “proper” nature. Moreover, these intervals are closed i.e. if we 
consider intervals over a time domain T with {beginAt, endAt, t}     T, then  t  is within the  closed interval [ 
beginAt, endAt] if beginAt <= t and t <= endAt. For instance, if I1 and I2 are two time intervals, the above  
intOverlaps relationship is defined as followed: 

intOverlaps(I1,I2) [ProperInterval(I1)     ProperInterval(I2)]  
     (     t2, t3)[ends(t2, I1 ) begins(t3, I2 )  before(t3, t2) 
   (     t1 )[begins(t1, I1 ) before(t1, t3 )]
   ( t4 )[ends(t4, I2 ) before(t2, t4 )]]]] 

Clock, time zone and calendar definitions are added to this interval framework to serve as the foundation of the 
OWL time ontology for the semantic web published by World Wide Web Consortium(W3C)[6]. This time ontology 
is expressed in OWL DL which is a First Order Logic (FOL) restriction based on SHOIN  DL. This DL  is 
decidable thanks partially to well defined semantics and proven reasoning algorithms. Thus, OWL time ontology is 
an excellent candidate for our time-based reasoning framework for CPS.   

3.3. System architecture and description 

The system architecture for our time-based reasoning framework is shown on figure 3 below. It’s comprised of three 
integrated modules: 
 
Module 1: The Cyber-Physical System. This module is the actual CPS of interest, with each of its main 
subsystems having corresponding time model. The physical and cyber worlds communicate through an interface 
comprised of a network fabric between the various platforms, along with other physical interfaces. Physical time is 
the time at sensors, actuators and other network interfaces while the cyber time is the one of the computation. In 
order for the time-based reasoner to operate properly and allow for efficient decision making, there is a need for 
synchronization of the different clocks. One solution to this challenge, as introduced in [11], is to deliver events to 
the component of the system along with its corresponding time stamp.  
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Module 2: The Ontologies. The ontologies module formally describes the different physical and non-physical 
domains involved in the CPS modeling problem. The ontologies embed the abstraction of those domains and 
provide the intended meaning of concepts and statements in the domain. The appropriate mathematical framework is 
the DL formalisms introduced above. We are investigating use of the PHYSYS ontology [21] for capturing and 
representing the physical domain of the CPS. PHYSYS is a “generic” but formal ontology based upon system 
dynamic theory as perceived and used in engineering modeling, simulation and design. This makes it an excellent fit 
in MBSE approaches for CPS design. Moreover, it consists of three interdependent conceptual viewpoints or 
engineering ontologies formalizing structural (component), mathematical and process (dynamic) views on physical 
systems. Its process ontology specifies the behavioral view, using physical mechanisms that are applications of 
physical laws and principles to energy flows (in dimension energy/time). Analogies that exist between different 
physics such as mechanics, electricity, magnetism, hydraulic or thermodynamics are exploited along with system 
theory to produce a unified ontological view of physical systems using bond graph formalisms. In support of 
reasoning, there is a need to extract the dynamics of the physical system in term of time. This is the function 
performed by the Converter which, after the Bond Graph of the system is translated into differential equations and 
solved (process not shown), maps the behavior entities of the process ontology to time ontologies entities. The 
methodology introduced in [7] (see section 2.2) allows for the conversion of non-time entities into time entities and 
could be considered for this function too. Those time entities are time slices, which rejoined the abovementioned 
notion of time interval.   

 
Module 3: Time-based Reasoning Engine.  It receives inputs from the CPS and ontology modules and provides 
DL support for reasoning efficiently about time intervals. The Tbox of the DL knowledge base for our system 
contains “terminological” time axioms. They comprise the formal definition of concepts – temporal entities - as well 
as a set of roles that are mostly mereological and topological types of relations embedded in the structure of the time 
ontology.  These axioms also provide type definition to temporal objects contained in the Abox which encompasses 
assertional axioms on the time domain.  The reasoning system: (1) checks for (un)satisfiability of propositions 
constructed with the combination of Tbox and Abox elements in order to ensure consistency of the time interval 
knowledge base and, (2) infers new relations between input/existing time concepts (along with time objects) and the 
time domain or between themselves. Tableau algorithms can be used to test and check for consistency in the 
database and support the construction of a clash-free tree for input temporal concepts. Put together, those trees 
compose triple graphs of time concepts that can be queried. Triples contained in the graph are of the form Subject-
Predicate-Object. Then, user defined inference rules further shrink the size of the graph thanks to predefined filters 
leading to a small (or empty) list of triples that serves as the basis for decision making. This process should be fully 
aligned with our CPS control strategy. In this framework, both Subject and Objects in triples are proper time 
intervals and Predicates are fully compatible with Allen’s time interval specification as defined in Section 3.2. Our 
reasoning framework can be fully expressed using RDFe  which is a basic relational language with simple 
ontological primitives. OWL also provides a powerful but still decidable ontology language to the same end.  

4. Prototype Implementation: Behavior of a Car approaching a Yellow Traffic Light 

4.1. Overview 

To illustrate the use and effectiveness of the time-based reasoning framework, we consider the problem of decision 
making that occurs when a car approaches a yellow traffic light. For experimental purposes, two cases will be 
considered: (1) a human-driven car, and (2) an autonomous smart car. The driver’s reaction time in case (1) 
increases the stopping distance while the smart car will have an almost-zero reaction time. Therefore, we seek to 
understand how this will translate to improved intersection throughput and enhanced traffic system safety. 
This system is an “ideal” CPS in the sense that vehicles (physical system) interact with the light (cyber system) with 
the aim of maximizing traffic throughput while ensuring safe crossing of vehicles and pedestrians at the intersection. 
In actual real-world traffic light systems, timing of the yellow light for vehicles is generally set solely based on the 
expected throughput of incoming vehicles, not their physical characteristics. When the light turns yellow as the car 
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approaches the intersection, the driver must decide whether to stop the car or keep going. Therefore, as illustrated in 
Fig 4, not knowing the following three pieces of information can lead to performance and/or safety issues for this 
system: (1) duration Y of the yellow light before it turns red;  (2) stopping distance S of the vehicle given the actual 
speed, thus the corresponding duration S; (3) duration B it will take to arrive at the intersection given the actual 
speed and position of the vehicle.     

 
 

Fig. 3. High level architecture of the Time-based Reasoning System for CPS 
 

 
 

Fig. 4. Time-based decision tree of a human-driven car for the yellow light 

4.2. Time-based reasoning system for an optimized traffic light: prototype 

 The decision tree above shows that none of the two decision pathways - assuming they are irreversible - is one 
hundred percent safe for the traffic light system!  Moreover, even if the car crosses the intersection before the light 
turns red after failing to stop, there are still performance issues (overall reduced throughput) requiring correction. 

Light turns Yellow! 



410   Leonard Petnga and Mark Austin  /  Procedia Computer Science   16  ( 2013 )  403 – 412 

Figure 5 shows the decision tree of a smart car whose behavior is consistent with the optimized traffic light system. 
Figure 6 introduces a prototype of the improved traffic light system implementing our time based reasoning 
framework. The system is augmented with workspaces for engineering, time ontology and cyber models 
implemented in Python, a leading object oriented scientific programming language. The three modules of the 
reasoning framework are implemented as followed: 
 
Ontology Models: Given the simplicity of this model there is no need for the whole PHYSYS ontology here. 
However, a basic space ontology specifying position and distance concepts used by both Safety and Dynamic 
models of the vehicle is important. We note the central place of the time ontology whose semantics are used to 
properly specify light and car dynamics. An excerpt of its implementation in Python shows the definition of the time 
interval as specified by Allen’s temporal algebra.     
 
Engineering Models: In Fig. 6 we distinguish cyber models (yellow shading) from physical models (white 
shading). They model the behavior of the car as prescribed by both engineering specifications and physics of the 
vehicle and in accordance with the definitions provided by the supportive ontologies. Dynamic and safety models 
are interconnected since the stopping distance of the car is a quadratic function of its velocity [22], which is a linear 
function of time (assuming a constant acceleration).  The light model is used to represent the logic (cyber part) of 
the traffic light based on the light and time ontologies. The timing and duration of the lights are specified based on 
the time ontology while the light ontology supports specifications such as sequence and colors (green, yellow and 
red). Put together, these models make up an implementation of the cyber-physical module of our framework.    
 
Time-Based Reasoning Model: The time-based reasoning model makes use of the direct and real-time flow of time 
data from both the light (cyber module) and car dynamic (physics) to reason about the safety and performance of the 
system based on inference rules.  The space-time conversion interface provides the position of the car in term of 
time instants based on the dynamic and safety models. Thus, the reasoner can project from the current instant (tX) 
the time intervals for both stopping the car (if the driver brakes) and arriving at the intersection (if the car keeps 
going). These time points are respectively the instants at which the car arrives at S or S’ i.e. tS/tS’ and B (tB) as 
shown on the simulation view of the reasoning model. Similarly, time interval for the Yellow (as well as others) 
light can be determined based on the set timing. The simulator takes charge of the synchronization of the clocks 
either at the instant the light turns yellow (tX) or at start time. The DL structure supporting time ontology along with 
its reasoning machinery (that we implemented in python) is called to (1) identify the nature of the light and its 
projected color when the car will arrive at B; (2) build the RDF graph for all possible triples involving the two time 
intervals. We then apply inference rules from six of the seven Allen’s basic intervalsf to the graph and extract the 
“list” of triples (which should contain the wining one) for the light. Finally, we walk through the list and identify the 
exact relationship between the two intervals.  
This results in the determination of the appropriate course of action for the car. Thus, knowing those temporal 
information ahead leads to efficient decision making, better performance and improved safety for our system as 
shown by the new decision tree in Fig. 5. 

 
Fig. 5. Time-based decision tree of a smart car for the yellow light.

 

f Inference rule for the “Before” relationship is excluded since at this point, the two intervals share at least one time-point which is 
the instant  the car will arrive at B. 

Light turns Yellow! 
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5. Conclusion and future work 

        We have introduced a new time-based reasoning approach in MBSE for CPS. Our framework supports 
evaluation of CPS for which safety and performance are dependent on the correct time-based prediction of the future 
state of the system. Its capability goes far beyond the simple use of temporal semantics for answering mereological, 
topological and logical questions on the time domain. Mechanisms to reason on multi-time and handle non-time 
domains spanning CPS models are also provided. These results are been achieved thanks to Allen’s interval calculus 
algebra and temporal relationships as well as DL semantics and system backing decidability of our modular time-
based reasoning framework. A Python-based implementation of the framework is under development. 
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