
Advanced Engineering Informatics 30 (2016) 77–94
Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate/ae i
An ontological framework for knowledge modeling and decision support
in cyber-physical systems
http://dx.doi.org/10.1016/j.aei.2015.12.003
1474-0346/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: lpetnga@umd.edu (L. Petnga), austin@isr.umd.edu (M. Austin).
Leonard Petnga a,⇑, Mark Austin b

aDepartment of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
bDepartment of Civil and Environmental Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742, USA

a r t i c l e i n f o
Article history:
Received 18 August 2014
Received in revised form 31 December 2014
Accepted 30 December 2015

Keywords:
Ontologies
Cyber-physical systems
Reasoning
Decision making
Artificial intelligence
Semantic Web
a b s t r a c t

Our work is concerned with the development of knowledge structures to support correct-by-design
cyber-physical systems (CPS). This class of systems is defined by a tight integration of software and phys-
ical processes, the need to satisfy stringent constraints on performance and safety, and a reliance on
automation for the management of system functionality and decision making. To assure correctness of
functionality with respect to requirements, there is a strong need for system models to account for
semantics of the domains involved. This paper introduces a new ontological-based knowledge and rea-
soning framework for decision support for CPS. It enables the development of determinate, provable
and executable CPS models supported by sound semantics strengthening the model-driven approach
to CPS design. An investigation into the structure of basic description logics (DL) has identified the needed
semantic extensions to enable the web ontology language (OWL) as the ontological language for our
framework. The SROIQ DL has been found to be the most appropriate logic-based knowledge formalism
as it maps to OWL 2 and ensures its decidability. Thus, correct, stable, complete and terminating reason-
ing algorithms are guaranteed with this SROIQ-backed language. The framework takes advantage of the
commonality of data and information processing in the different domains involved to overcome the bar-
rier of heterogeneity of domains and physics in CPS. Rules-based reasoning processes are employed. The
framework provides interfaces for semantic extensions and computational support, including the ability
to handle quantities for which dimensions and units are semantic parameters in the physical world.
Together, these capabilities enable the conversion of data to knowledge and their effective use for effi-
cient decision making and the study of system-level properties, especially safety. We exercise these con-
cepts in a traffic light time-based reasoning system.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cyber-physical systems (CPS) are defined by the integration of
physical systems with sophisticated (highly automated, autono-
mous, multi-agent) computation and networking. Embedded com-
puters and networks are tasked with monitoring and controlling
the physical processes, usually with feedback loops where compu-
tation affects physical processes, and vice versa [1,2]. Early applica-
tions of CPS can now be found in a variety of industries, including
energy-efficient buildings, air and ground transportation, health-
care and manufacturing. The disruptive and transformative poten-
tial of these applications have led governmental entities and
researchers to position CPS as the next technological revolution
that will equal and possibly surpass the Internet [3,4].
The long-term expectation of CPS design is that engineers will
be provided with methods and mechanisms to create systems that
will always work correctly, and will operate with superior levels of
performance, reliability and safety. Perhaps CPS will achieve these
purposes through the use of new architectural models that rede-
fine form and function? At this time, however, the full potential
of this opportunity is hindered by the lack of a mature science to
support systems engineering (i.e., definition, composition, integra-
tion) of high-confidence CPS. Capturing and analyzing CPS behav-
iors in formal models, even minimal ones, is cumbersome.
Present-day procedures for the engineering of CPS’s are weakened
by the presence of non-determinate models, weak temporal
semantics, coupled with the high sensitivity of CPS to timing [5].
For CPS applications that are safety critical, this is a problem
because notions of design correctness will correspond to the satis-
faction of physical world constraints and, in turn, their dependency
on formal models of time and space.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2015.12.003&domain=pdf
http://dx.doi.org/10.1016/j.aei.2015.12.003
mailto:lpetnga@umd.edu
mailto:austin@isr.umd.edu
http://dx.doi.org/10.1016/j.aei.2015.12.003
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei

78 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
This paper takes a first step toward mitigating these deficien-
cies. We lay down the foundational building blocks to support
the development of determinate CPS models, with strong temporal
and domain-specific semantics strengthening model-driven
approaches to CPS design. Our focus will be on the data and infor-
mation processing layer of CPS modeling, with a particular atten-
tion to procedures and mechanisms for producing determinate,
provable and executable CPS models. We introduce and describe
an innovative ontological framework, and illustrate the structure
and phases of construction for a knowledge modeling and decision
support framework for CPS (CPS-KMoDS). The framework offers
some flexibility in its implementation, for example, for the selec-
tion of tools and type of tasks targeted by the model. System
dependability characteristics, especially safety, are viewed as
multi-domain models that drive the evaluation of decision tasks
and, as such, development of the ontological framework.

The paper is organized into six sections. Section 2 briefly pre-
sents CPS and semantics challenges in modeling such systems as
well as key requirements for the CPS-KMoDS. Section 3, along with
Appendices A–C, provides a summary background on the mathe-
matical foundations supporting the framework with an emphasis
on description logics (DL) and their central role in supporting rea-
soning tasks. In Section 4 the proposed framework is introduced
and its construction process described. A Jena-based implementa-
tion of the framework is presented in Section 5. We exercise the
framework through the development of a time-based reasoning
system to support decision making for cars passing through a traf-
fic intersection controlled by traffic lights. The paper concludes
with a summary and suggestions for future work.
2. CPS knowledge modeling and ontologies

2.1. CPS: overview and key characteristics

An examination of CPS application domains (e.g., aerospace,
healthcare, transportation, energy or automotive) reveals compo-
nents that span multiple physics and engineering domains, operate
across multiple time scales, and have dynamics that are sometimes
affected by human-in-the-loop interactions. Thus, we can catego-
rize CPS components as follows [6]:

(a) Cyber components: These are computation, control and
communication platforms, each implementing some specific
system function. Given their software (or cyber) nature,
these components need a physical (or hardware) platform
to run the corresponding program, to support communica-
tion among cyber components and with the surrounding
environment.

(b) Physical components: They act as facilitators for physical
interactions as well as implementation of functional specifi-
cations for the system. Generally speaking, physical compo-
nent complexity increases when components cover multiple
engineering domains, and when components embed compu-
tational capability. Examples of the latter include onboard
computers in automobiles, unmanned aerial vehicles
(UAV), smart sensors in bridges, and smart medical
implants.

Fig. 1 shows the network structure and components in a proto-
typical CPS. The system is made of four integrated and networked
platforms with a physical plant. A network (wireless in this case)
allows the various platform to communicate with each others. This
network could be as small as a Local Area Network (LAN) or as big
as the Internet. Some of the links between the platforms are direct
and would not go through the wireless network. One of the
platforms (#4) is embedded in the physical plant which interacts
with the cyber world through physical interfaces. Each platform
is made of all or some of the following components:

1. Computation module: Computation modules process plant
data collected by sensors and/or output from other platforms.
System architectures may impose dependency relationships
among computation modules, independently on their location.
For our illustrative example (see Fig. 1), this capability allows
physical processes occurring in the plant to affect or modify
computations in platform #2 using both the embedded plat-
form (#4) and the wireless network to communicate with plat-
form #2.

2. Sensors: Sensors collect plant data (physical measurements)
and pass them to the computation module for further process-
ing. For example, sensors are illustrated on platforms #1 and
#4. They usually operate as a node in a sensor network
architecture.

3. Actuators: They intervene in the feedback control loop of the
plant to control mechanisms or processes according to the sys-
tem specifications. Platform #3 illustrates one of them.

4. Interfaces: Network interfaces allow for the flow of data
between platforms directly or through a network. Physical
interfaces allow for plant and platform connectivity. In Fig. 1,
all platforms are equipped with both types of interfaces except
for platform #2, which has only network interfaces.

2.2. Semantic challenges in CPS modeling and analysis

The design and realization of a CPS satisfying even a small sub-
set of the architecture shown in Fig. 1 is challenging. Difficulties in
development stem from a variety of sources including the need to
deal with a multiplicity of physics and engineering disciplines,
each requiring expertise. Lee [8] illustrates this complexity using
a subset of an aircraft electrical power system (EPS). Depending
on the domain-specific viewpoint, the perception of the system
can range from a software to an electrical system passing by a
mechanical, control or communication network. This leads to mul-
tiple domain-specific models of the CPS, with none of them cover-
ing the CPS entirely. In a slightly different take on strategies to
address challenges for CPS development, Sztipanovits [6] explains
this complexity through the observation that, often, the behavior
of physical components in CPS is defined by interactions among
multiple physics that are difficult to capture in a single model.
Thus, the CPS designer will face the challenge of composition of
multi-models for heterogeneous physical systems.

To complicate matters, modeling challenges seem even harder
when the subject of investigation covers CPS model semantics.
Doyle [9] observes that theories backing the various disciplines
involved in CPS are ‘‘deep but fragmented, incoherent and incom-
plete.” The landscape of theories span from Turing and Von Neu-
mann for computation to Einstein, Carnot or Newton for system
physics through Nash and Bode in control or Shannon in commu-
nication domain. Fig. 2 illustrates this complexity and a view of
some of the key challenges in the context of CPS modeling. Various
domains involved in the modeling and design effort are orthogo-
nally mapped to the main models abstraction layers.

Addressing semantic challenges: Some researchers have
investigated ways to address these challenges with mixed success.
In Derler [5], a landscape of technologies ranging from hybrid sys-
tems modeling and simulation to concurrent and heterogeneous
models of computation (MoC) is presented. The use of MoC in Ptol-
emy II [10] is possible thanks to well-defined semantics for concur-
rency and communication between actor-oriented component
models. However, despite its many computational advantages,
the use of superdense time models [11,12] for timing is not

Fig. 1. Example schematic of a CPS (Adapted from [7]).

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 79
intuitive for system modeling. Jensen [13] builds on these founda-
tions to propose a step-by-step methodology for model-based
design of CPS. This contribution addresses challenges in develop-
ment of the aforementioned abstraction layers, but there is no
explicit mention on how to handle non-functional requirements
in the broken chain of models produced by the design process.
Bhave [14] proposes an architectural-based approach centered on
an ‘‘architectural view” that encapsulates structural and semantic
correspondences between the model elements and system entities
represented at multiple layers of abstraction (physical, control,
software, hardware). While the mapping between various views
enhances reliance of the run-time base architecture, the underly-
ing process remains manual and error prone, especially as the size
and complexity of a system grows.

Critical role of safety in CPS development: It is evident from
Fig. 2 that system safety properties are critical at all abstraction
layers, which makes it a permanent concern for any CPS designer.
Due to the presence of physical-related elements and concepts in
the physical and platform abstraction layers, both are obvious sub-
jects of safety concerns. One way that safety concerns can become
an issue in the software abstraction layer is through deadlocks,
which in turn can lead to unsafe system configurations. The ratio-
nale here is that timing (from the physical world) in models at this
abstraction layer is not a simple performance or quality factor for
the software but a design correctness criterion. As a result, the
determination as to whether or not the system operates safely at
any point in time requires consideration of all of the relevant
aspects across the participating domains, physics, and abstraction
layers. Fortunately, all CPS share some commonality in the ways
they process information [1]. We illustrate this in Fig. 2 as the
so-called ‘‘commonality of information” that crosses all domains
and abstraction layers of the system design. The basic idea is to
design a data structure that encapsulates the relevant knowledge
of the CPS of interest while providing the foundation for meaning-
ful construction of models. We would like to provide a mean to
structure, organize and formalize that knowledge, and address
the challenge of modeling aspects of the system response related
to the evaluation of non-functional and safety requirements. The
premise here is that these safety properties and non-functional
requirements can be formulated as decision problems with true/-
false or yes/no solutions.

2.3. Requirements on CPS models for decision making

By definition a model is a simplified abstraction of another
entity [1,15]. From a MBSE perspective, models are designed to
allow for the quantitative evaluation of questions that can be
traced back to designer concerns (e.g., correctness of system func-
tionality; adequacy of performance; assurance of safety). A well-
designed model contains just enough detail to answer the relevant
questions and nothing more. For the purposes of this research, the
main task at hand is support for decision making, which, in turn,
drives the need for the development of models that are determi-
nate, provable and executable. The details are as follows.

1. Determinate: A model is determinate if it provides answers to
questions that are certain and conclusive. For the design of CPS,
it is well known that physical processes are not determinate.
Similarly, on the cyber side of development, the use of threads
as a dominant sequential model of computation to concurrency
results in models that are non-determinate [16]. The long-term
challenge is to counter these realities by ‘‘dynamically chang-
ing” programming models so that their correct execution
always produces acceptable behaviors at subsystem I/O [8]. This
capability will ease the modeling, simulation and verification of
non-functional requirements and dependability properties with

Fig. 2. Complexity and challenges in CPS Modeling (Adapted from [6]).

80 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
safety as one of the most important. Given the restrictions and
intrinsic weaknesses of computer systems, this is not an easy
task [17]. However, we ought to be able to start by producing
well-defined, determinate models and progressively move
toward stochastic ones along with ways to deal with
uncertainties.

2. Provable: A model is said to be provable if it has the capability
to establish the validity (or truth) of assumptions. For the
design of CPS, the development of provable models is
complicated by the heterogeneity of physics, domains, and
abstractions emanating from different types of models. Still,
with safety at the heart of system characteristics, the precise
meaning of models is required; thus, the need for formal
semantics and formal descriptions of models that keep
unambiguity away.

3. Executable: For our purposes, a model is said to be executable if
it is formal enough to be processed by a machine. Complicating
factors include data and information emanating from multiple
distinctive sources, and the need for evaluation of system
behaviors that are dependent on multiple physics and multiple
abstractions. See Fig. 2. From this perspective, the CPS model
will be similar to a computer program that provides a precise
and concise description on how data can be cast into a repre-
sentation to support decision making. For this process to work
well, the underlying modeling language should be decidable
in the sense that the designer should be able to automatically
determine model correctness and the point of program termi-
nation. Unfortunately, standard languages such as Fortran, C,
C++ or Java are not decidable, as demonstrated by the
unsolvability of the Halting problem [18,19]. Therefore, to move
forward, some restrictions are needed to achieve decidability of
a problem formulation casts in one of these languages.

2.4. Ontologies for Model Based System Engineering (MBSE) of CPS

Now that the engineering community is recognizing the bene-
fits of model-centric approaches to system development, increas-
ingly computer-based models are becoming the authoritative
source of information to drive design processes forward. In order
to support decision making in team-based development, the asso-
ciated frameworks need to be represented with modeling lan-
guages that have formal semantics. Thus, as a pattern for what
constitutes a system (i.e., parts, connections, identity, dependence,
etc.), system ontologies provide a strong foundation for modeling
and analysis of the participating domains that includes meaning
of terms and validation of model correctness [20].

Given the breadth and complexity of CPS applications, in our
opinion, the search for a ‘‘unique foundational ontology for CPS”
is not likely to produce fruitful results. Some researchers have ori-
ented their work toward supporting the development of CAD and
CAE based tools and their semantic interoperability [21,22]. Others
adopt a manufacturing and product-based focus to their ontolo-
gies, framework or language development and use [23,24]. A vari-
ety of studies have highlighted the key role of ontologies and
Semantic Web technologies in heterogenous engineering knowl-
edge capture and formalization within the context of knowledge
based engineering efforts [25], and systems integration in the wide
field of construction [26].

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 81
Despite the numerous benefits of these framework, the models
that they produce lack several of the properties and characteristics
needed to satisfy the requirements identified in Section 2.3. Weak-
nesses include the lack of support for the physical aspects of CPS
and ontological modeling of time, which is one of its critical meta-
domains. The CPS-KMoDS framework that we introduce in this
paper aims to mitigate these gaps with the use of models and tools
based upon ontological and logic-based mathematical foundations.
3. Description logic semantics and support for reasoning

This section introduces formalisms for the capture and repre-
sentation of knowledge, suitable for decision making support in
CPS development. Traditional approaches to knowledge represen-
tation and reasoning stem from artificial intelligence (AI) and clas-
sical logics, which may or may not be decidable. Our focus is on
methods that are computationally decidable. As such, we make
extensive use of description logics (DL) and its various extensions.
3.1. Knowledge representation formalisms

In their effort to formally capture and represent domains
knowledge, researchers have developed several knowledge repre-
sentation formalisms such as Semantic Networks [27–29], Frame
Systems [30–32], Description Graphs [33–35] and Logic-based for-
malisms [36]. The latter, and especially the declarative part of
frame systems, have played a central role in the evolution of AI for-
malisms. Feature logics were developed as the constraint logic part
of so-called unification grammars, such as head-driven phrase
structure grammar (HPSG). For details, see http://hpsg.stanford.
edu/. Modal and description logics (DL) appear to be the most
appealing logic-based formalisms for framework like ours. In fact,
some results for description logics were found by translating
results from variations of modal logics (propositional dynamic log-
ics, l-calculus) into description logics [37,38]. For the purpose of
this work we’ll be using description logics and its multi-values
attributes capability. A brief definition of key DL concepts and its
ALC extension are introduced in Appendix A.
3.2. Description logics extensions for the web ontology language
(OWL)

In order to build models that address the challenges identified
in Section 2.2 and satisfy the requirements of Section 2.3, CPS
applications need to be backed by ontologies that have well-
defined semantics and support for formal reasoning. DLs provide
these formal foundations to the web ontology language (OWL)
[39,40]. In fact, the semantics of the OWL language can be defined
through a translation into an expressive DL. However, as pointed
out by Baader and co-workers [41], the ALC extensions (see
Appendix A) are incapable of efficiently supporting OWL because
important pieces are missing. Bridging this gap requires a certain
number extensions including support for role Hierarchy (H), Nom-
inals (O), Inverse and transitive roles (I), Cardinality/Number
restriction (N), Qualified number restrictions (Q), Role restrictions
(R) and Concrete domains. These extensions are briefly defined
along with illustrative examples in Appendix B.

Fig. 3 shows how these extensions to ALC DL can be organized
and mapped to semantics for the OWL sub-languages. To that
extend, OWL 2 (standardized in 2009) overcomes a number of
weaknesses (e.g., relational expressivity, syntax deficiencies, spe-
cies definitions) in OWL 1 [42]. Tapping into this potential for effi-
cient modeling and decision support for CPS-based applications
requires effective and decidable reasoning capabilities as enablers.
We briefly introduce in the next section the reasoning infrastruc-
ture needed to that aim.

3.3. Reasoning support for SROIQ-based ontologies

When the relevant set of axioms are applied to a specific DL-
based ontology, the result is a knowledge base K ¼ ðT ;AÞ for the
domain being modeled. However, this is half of what we need for
our framework. This foundation needs to be completed with a rea-
soner that can derive, through inferencing, additional facts about
the concepts of the domain of interest. Among the key reasoning
services needed, are satisfiability, subsumption, equivalence and
disjointness. These services are formally defined in Appendix C.
Also, with regard to the SROIQ-DL which is mapped to OWL 2
(see Fig. 3) there is a need to formally establish the decidability
of this DL. Thus, Proposition 1 builds on the definitions introduced
to establish the satisfiability of the TBox while Lemma 1 ensures
the elimination of the ABox for the purpose of simplifying the com-
plexity of the reasoning process. Horrocks and co-authors [43] use
these preliminary results to construct and describe an algorithm
that decides the satisfiability and subsumption of SROIQ as stated
by Theorem 2. Hence, given the mapping in Fig. 3, this theorem
ensures the decidability of OWL 2 DL, the language of development
of our ontological framework that we introduce in the next section.
4. Framework for modeling CPS knowledge and reasoning
support

4.1. System overview

The global context for the design and construction of this
framework is knowledge-enabled models for complex heteroge-
neous systems, such as CPS. The pathway for this task involves
many steps including automated data acquisition, transformation
of data to knowledge, and finally the creation of models that are
reusable, provable and executable. The first potential use of these
models is for system behavior and safety analysis. They can also
act as middleware for CPS systems. To achieve these purposes,
the CPS-KMoDS framework relies on the composition of domain-
specific ontologies (DSO) along with corresponding knowledge
bases (DSKB) on one hand and, domain-specific semantics exten-
sions, an integrator and the CPS application on the other hand.
The components of the framework are organized into layers as
shown in Fig. 4. Thus, we describe in the next section the different
layers of this architecture, and how the elements interact together
to produce decidable CPS models with regard to the requirements
identified in Section 2.3.

4.2. From data to knowledge: domain-specific ontologies and semantic
support

The domains layer is a modular piece at the center of the CPS-
KMoDS architecture. It covers the participating domains and disci-
plines (see the columns of Fig. 2), thus, represents concepts rele-
vant to the CPS under study. To completely capture and
represent the domain knowledge for CPS, we go beyond simple
standalone ontologies toward an architectural structure spanning
the bottom two layers of Fig. 4. The elements of these layers are:
(1) domain-specific ontologies (DSO), (2) a data repository, and
(3) semantic extensions and computation support. The details are
as follows:

Domain-specific ontologies (DSO): Each domain is formally
defined and described by a light, modular, and reusable basic
ontology that captures its core concepts and properties. Then, it
is extended with application-oriented concepts and properties.

http://hpsg.stanford.edu/
http://hpsg.stanford.edu/

Fig. 3. Description Logics formalism extensions for the Web Ontology Language.

82 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
This approach to ontology specification is consistent with the
TBox definitorial as introduced in Section 3.3 and formally defined
in Appendix A. In the absence of instances these ontologies are reu-
sable across applications. Laws and constraints of the domains are
captured and translated as rules in domain-related rules engines. In
order to provide support for complex computations and also to
enforce semantics of a given domain, an interface to the relevant
computational platform is needed by the reasoner.

Our framework employs three types of domain-specific
ontologies:

1. Physical ontologies. These are ontologies of physical subsys-
tems involved in the CPS of interest, for example, an automo-
bile, a building or an aircraft.

2. Cyber ontologies. These ontologies describe the cyber part of
the CPS are under this category. A software is an example of
such domain.

3. Meta ontologies. Meta concepts such as time, space, or privacy
that are relevant to the system are captured and described by
this category. Because of their cross-cutting nature, they can
apply to either the physical or cyber worlds, or both. In a previ-
ous work [44] we have demonstrated the critical importance of
time and temporal semantics for MBSE of CPS.

Data repository: The data repository contains instances of the
concepts defined in the ontologies. As the assertion component
of the architecture, instances are interpreted as the ABox in the
DL formalism. It is important to note that this interpretation oper-
ates under an ‘‘open world assumption” as opposed to a ‘‘close
world assumption” of databases. Thus, the reasoner is prevented
from drawing erroneous and invalid conclusions from the facts in
the knowledge base. Control mechanisms embedded in the rules
engine ensure that any data available in the repository is correct.
These measures are particularly important, as CPS are safety criti-
cal systems and the decision made has to be the right one (always)
in order to guarantee system safety.

Semantic extensions and computation support: As shown in
Section 3.2, the SROIQ DL is equipped with appropriate for-
malisms to handle concrete domains – these are pre-defined inter-
pretation domains for which semantics of datatypes are invariant
(i.e., the same no mater the interpretation). Therefore, the develop-
ment of this framework with an ontology language backed by this
DL or equivalent will provide similar support.

Unfortunately, supported concrete sets such as real, integer or
boolean that are computation friendly can miss essential informa-
tion (e.g., dimensions and units) from the physics of the domain of
interest. Support for reasoning with physical quantities can be
made as needed, and made available to the reasoner through its
interface. Hence, the corresponding computational platform will
be able to process physical quantities-based datatypes. These ori-
entations put our framework at the forefront of the efforts for a
more ‘‘physicalization of the cyber world” in the sense of Lee [7].

4.3. From knowledge to model: system integration and CPS knowledge
model build-up

The pathway from knowledge to models is defined by a system-
atic build-up of knowledge models from domain-specific ontolo-
gies. Ontologies from disparate domains need to be merged and
integrated with ontologies that represent concepts from cross-
cutting concerns, such as time.

Assembling ontologies: Domain-specific ontologies along with
rules engine and semantic support are good foundations to
domain-oriented system modeling, as described in the previous
section. In the context of CPS modeling, however, stand alone
formalizations of a sub-domain do nothing more than provide a

Fig. 4. Architecture of the CPS-KMoDS.

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 83
formal description of the domain and means for the designer to
test proper low-level interactions between the different modules
at the domain level. Even though the latter step is very important,
it is not enough. There is a need to reuse the various domain
ontologies in a coherent and correct assembly. This has to be done
in a way that properly renders the CPS of interest while preserving
the decidability of the underlining DL formalism. Several research-
ers [22,45] indicate that the following techniques provide a path-
way for moving forward:

1. Merging: Ontologies for similar domains are merged into one
single coherent ontology.

2. Alignment: Complementary domains ontologies are linked,
resulting in two or more ontologies.

3. Integration: Ontologies from different domains are merged in
one single ontology.

The categorization of DSO (as shown in Section 4.2) prevents
the designer from introducing overlaps between ontologies during
their development. This is not always guaranteed as concepts and
properties can be repeated in different ontologies. Still, the CPS
model has to be viewed as a unified domain, thus the need for a
single ontology backing the model. This leaves us with ‘‘ontology
integration” as the appropriate pathway for assembling individual
ontologies in the CPS-KMoDS framework. The CPS ontology is cre-
ated by merging all ontologies (including the integrator) under a
single umbrella ontology that is checked for consistency before
any further use.

Integrator ontology and extensions: The integrator is created
to capture, represent and translate CPS properties and concepts
that are not part of a specific subdomain. Concepts in this ontology
are mostly from the individual DSO. The integrator has its own
rules engine that translates the constraints and laws applicable
to the CPS of interest. It also handles system metrics and control
parameters, including decision rules capable of determining sys-
tem safety state at any point in time. There is no need for semantic
extension to support this ontology as it’s not related to a specific
concrete domain. Depending on the problem, one might need the
system rules engine to interface with external solvers, for example,
to handle complex calculations such as differential algebraic equa-
tions (DAE) or finite element analysis (FEA). A computation inter-
face augmented with proper semantic translation capabilities is
charged with linking both modules. However, the effectiveness of
such computation platforms are dependent on the performance
of the implementation hardware. This could significantly affect
on-going decision tree exploration in the rules engine in a context
where timing is a design correctness criterion, as seen in
Section 2.2. For those cases where the granularity of modeled time

84 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
is not appropriate for the selected computation support platform,
solvers can be replaced by set of lookup tables. These lookup tables
will encode, with a high level of precision, solutions to the system’s
equations.

4.4. Reasoning for decision support

Reasoning is concerned with the use of inferencing techniques
to draw conclusions from a set of premises. In the proposed frame-
work, decision trees are translated into sets of logical rules that can
be evaluated through the use of reasoning strategies.

Choosing a reasoning approach: Generally speaking, reasoning
techniques can be of three types which are logical [46,47], heuristic
[48,49], ethical [50,51]. Because of their weak underlying for-
malisms thus, high risk of undecidability, the last two approaches
are weak are not good candidates for our framework. Therefore,
moving forward, we only consider automated mathematical
logic-based reasoning approaches, with a bias towards those
enabling automated theorem proving. We would like every logical
inference to be checked all the way back to the fundamental math-
ematical axioms in order to ensure model provability. Thus, some
critical capabilities are needed to the rule-based reasoning
approaches that we adopt for our CPS-KMoDS framework.

Rule-based reasoning for CPS-KMoDS: Rule-based reasoning
is the classical approach to logic-based reasoning, where the
knowledge-based system is developed by deduction, induction,
abduction or choices from a starting set of data and rules. The main
components of a rule-based reasoning system are: (1) the rule
base, (2) the inference engine, and (3) a variety of miscellaneous
integration components.

The rule base corresponds to a set of rules applicable to the
(sub)system of interest. Rules are of the form of ‘‘If. . .then. . .” state-
ments. Each rule is made of a body that contains all premises or
conditions and a head that states the conclusion(s) when the con-
ditions are satisfied. In CPS-KMoDS, rules are written and used in
the following three ways:

1. Forward chaining (materialization): The rule base is scanned
and heads are precomputed and stored. Conditions are evalu-
ated one at a time, from left to right. The evaluation stops any
time a condition is not satisfied and the rule is not fired. The
CPS-KMoDS Integrator rules engine uses this method to hook
to and access external lookup tables when needed.

2. Backward chaining (query-rewriting): The computation of the
head of the rule is done on-demand with a minimal index stor-
ing. When the head of the rule is not called in an instance of an
execution chain of the rule base, the given rule is not evaluated.
This approach appears to be the most indicated for writing rules
in our framework, especially when it’s used as middleware.

3. Hybrid chaining: This approach combines the previous ones in
complex rules designed to take full advantage of both methods.

Inference engine provides mechanisms supporting the use of
the ontology language and allowing for additional facts to be
inferred from available data in the repository and class definitions.
Within the context of CPS-KMoDS, semantic reasoners are the
actual concrete code objects that perform the inferencing task.
The chosen ontology language for our framework is OWL, which
is SROIQ-backed and decidable, as shown in Section 3.2 and
Appendix C. For practical applications of reasoning, there also
exists numerous OWL DL reasoners, such as Pellet [52] and RACER,
the Renamed ABox and Concept Expression Reasoner. They can be
plugged into actual implementations of the CPS-KMoDS
framework.

Miscellaneous components for the reasoning system include a
temporary working memory to store information that is in-
transit between different computation cycles, and connections to
other parts of the framework. The latter are essentially internal
links to TBox, ABox and possibly external connections to semantic
extensions and computation support systems through interfaces
(when needed), as shown in Fig. 4.

In our framework, reasoning engines are implemented and
tested for each of the DSOs involved in the CPS of interest. They
are integrated into a system rules engine along with the integrator
rules engine. This operation mimics the above-mentioned ontolo-
gies integration process. Fig. 5 employs the architectural compo-
nent shown in Fig. 4 and synthetize the development process for
modeling and analysis of CPS behavior and properties in the CPS-
KMoDS framework. The next section is a case study that exercises
the key architectural elements of our framework.
5. Case study: A traffic light time-based reasoning system

5.1. Overview of the case and set up

The purposes of this case study are to: (1) show how the pro-
posed CPS-KMoDS development chart in Fig. 5 can be used to build
the architecture in Fig. 4, and (2) illustrate how the underlying rea-
soning structure can be used to support decision making and, con-
sequently improve system level safety. Our focus will be on the
domains layer of the architecture and its immediate parent (inte-
gration) and child (extension and computation support). This case
study problem builds upon our previous work illustrating the
implementation of the application layer, and the problem of a
self-driving car traveling through a traffic intersection controlled
by a smart traffic light system [44,53]. In the latter, vehicles (i.e.,
the physical system) interact with the light (i.e., the cyber system)
with the objective of maximizing traffic throughput, while ensur-
ing vehicle crossings are safe at the intersection. Each entity is
equipped with its computation platform as per Fig. 1. This problem
setup enables us to depart from the current traditional master–
slave relationship between the vehicles and the light and move
to a cooperative relationship enabled by a bidirectional communi-
cation between these entities. Also, we keep the physics of the
vehicle simple (constant speed) and assume that computation
times are insignificant enough to not affect the effectiveness of
the decision process. The framework implementation employs
Jena, a Java-based framework for the implementation of Semantic
Web technologies that support the development of needed ontolo-
gies (i.e. car, light and time ontologies) as well as reasoning pro-
cess. Let’s formulate and analyze the problem domain as per the
left-hand side of Fig. 5.
5.2. Dilemma zone problem, decision and reasoning problems
formulation

Twilight zone. The ‘‘twilight zone” of a traffic intersection –
also called the dilemma zone (DZ) – is the area where drivers are
indecisive on whether to stop or cross at the onset of a yellow light.
It claims around 2000 lives at stop light intersections and billions
of dollars worth of damages in the United States every year [54].
Fig. 6 shows a simplified representation of the problem setup.
The core safety requirement of the system car-light that should
be valid all the times is that ‘‘No vehicle is allowed to cross the
intersection when the light is red”. This is a non-functional require-
ment, a hard constraint which violation is the driving force behind
the multiple accidents at intersections. As shown on the Figure, the
continuous dynamic of the vehicle (a) and discrete behavior of the
light (b) illustrate the very different nature of both entities.
This complicates the ability of the system to satisfy the safety
requirement at the onset or in the presence of the yellow light.

Fig. 5. Proposed flow chart for development of the CPS-KMoDS framework.

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 85
However, an analysis of the problem shows that there is a way
forward.

Translating safety requirement satisfaction into a decision
problem. Understanding the mechanisms by which system-level
safety is achieved or violated is critical in addressing the dilemma
zone challenge. Decision trees appear to be the most suitable anal-
ysis tool to explore the different possible paths the system could
follow and characterizing the resulting state as safe or unsafe. Pet-
nga and Austin [44] have shown that the probability of making the
right course of action increases when the car has three key infor-
mation at decision time: (1) Duration HY of the yellow light before
it turns red; (2) Vehicle stopping distance XS, and (3) Travel dura-
tion HB or distance to light XB. A smart car will be able to detect
the light and accurately compute XS, HB and XB on one hand,
and take advantage of the bidirectional communication with the
light to obtain HY from the stop light. Thus, it will be able to make
a more informed decision as shown by the system decision tree (c)
in Fig. 6. In [44], we show that, compared to actual human driven
systems, this approach significantly improves system level safety
and throughput by reducing the number of decision paths that lead
to unsafe states. However, all paths of the decision tree still do not
lead to good decisions as shown by the decision tree in Fig. 6. Thus,
the system will not be 100% safe solely by relying on the smartness
of the car.

Reasoning support to preventing unsafe system configura-
tions. The configuration of the system for which there is no good
decision despite the car smartness highlights the prominent role
of the physics in the overall system safety. One illustration is the
situation where the speed and/or condition of the vehicle along
with the one of the road do not allow it to stop safely before the stop
light or cross it before it turns red. Thus, the system will enter an
unsafe state, the vehicle physics preventing the safety requirement
from being satisfied. In such situations, we make use of the bidirec-
tional relationship and reasoning capabilities of both entities (and
an intermediary traffic supervisory controller) to resolve this issue
before it materializes. If the traffic light learns that a vehicle cannot
possibly pass through the intersection safely, it will reconfigure its
operations for instance by lengthening the duration of the yellow
light by just the amount of time needed ie DH (determined by
the supervisory controller) for the car to cross safely. The additional
time will be taken from the duration of the red light in the same
cycle, making its length unchanged. This will result in a safe cross-
ing of the intersection as shown by The mechanics behind this rea-
soning process is rendered possible by the critical role of temporal
semantics and Allen’s temporal intervals [55] as we demonstrated
in [44]. Further analyses (outside the scope of this work) identify
four unsafe regions (I, II, III, IV) in the system decision space corre-
sponding to situations where there is no good solution to the driv-
eless car. We illustrate such situations in the context of a ‘‘Leader
and Follower” configuration of the system in [56].

5.3. Jena-based modeling of the Traffic System as a CPS: system
architecture

The implementation of our architectural framework makes use
of Semantic Web technologies [39] and the Jena Application

Fig. 6. Schematic of traffic intersection ‘‘dilemma zone” problem and corresponding simplified decision tree.

86 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
Programming Interface (API) [57]. The latter is a Java-based frame-
work for the development of Semantic Web applications. As such,
it provides a variety ofAPIs for accessing and handling standardized
technologies such as the Resource Description Framework (RDF),
triple stores and OWL platforms. Jena architectural framework
supports the deployment of architectures that are consistent with
the general architecture in Fig. 4. That’s what the construction pro-
cess of the solution domain (as per Fig. 5) of the dilemma zone
problem does. The various layers of the CPS-KMoDS architecture
in Fig. 4 are individually implemented and programmatically
assembled bottom up as per the architecture using the capabilities
of Jena API. In the next sections we describe each layer of the

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 87
CPS-KMoDS architecture for our traffic system example and their
Jena-based assembly following the flow chart in Fig. 5.
5.4. Domains layer: light, car and time ontologies semantic blocks

From a CPS perspective and as suggested by the architecture,
our traffic system model is partitioned into subdomains. We keep
the space domain simple (reduced to a point), thus, there is no
need for a separate ontological description for this meta domain
for this application. For each of the three foundational sub-
domains (i.e., physical, meta and cyber), a corresponding domain
specific ontology – car, time and light – is created along with
domain rules. For instance, a car is defined in term of families such
as #LightTruck, #SUV with properties like #hasWeight and #hasFi-
nalDriveRatio. These properties are common to all types of car.
Similarly, #hasColor and #hasCycleDuration are properties com-
mon to all stoplights. As for time, we employ a simplified version
of the OWL-Time ontology [58] that is consistent with Allens tem-
poral interval calculus. Concepts such as #Instant,
#ProperTimeInterval and properties like #beginsAt and #intMeets
serve as the foundation for the domain. Extensions are program-
matically added using the Jena ontology API. This results in the
development of subsystem ontologies that provide a better defini-
tion of the subsystem for efficient future use. For example, data-
type properties such as #hasSpeed and #hasStoppingDistance are
Fig. 7. Time reasoning engine architec
added to the car ontology because of their relevance to a formal
quantification of the vehicle dynamics. This, in turn, is critical to
the decision making strategies that solve the dilemma zone
problem.

The excerpt below shows a description of the #intEquals object
property in XML format. It formally defines the notion of equality
between two entities of type #ProperTimeInterval.

<owl:ObjectProperty rdf:about="&time-entry;
intEquals">
<rdf:type rdf:resource="&owl;
ReflexiveProperty"/>
<rdf:type rdf:resource="&owl;
SymmetricProperty"/>
<rdfs:domain rdf:resource="&time-entry;
ProperTimeInterval"/>
<rdfs:range rdf:resource="&time-entry;
ProperTimeInterval"/>

</owl:ObjectProperty>
A set of rules is created for each domain-specific ontology and
encoded in the corresponding rules engine. For example, the
fragment of code:
tural block and implementation.

88 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
// Rule #1: Propagate class hierarchy relationships

. . ..

[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y) ->
[(?a rdf:type ?y) <- (?a rdf:type ?x)]]

// Rule #2: Inferring an "Instant" from the

definition

// and property of a temporal entity. . .

[Instant: (?x rdf:type te:TemporalEntity) (?x te:

hasTime ?t)

noValue(?x rdf:type te:Instant) -> (?x rdf:type te:

Instant)]

// Rule #3: Duration of a "Proper" time interval . . .

[GetDurationPropInterv: (?x rdf:type te:

BegEndTimeInt)

(?x te:beginsAt ?t1) (?x te:endsAt ?t2) getDurInt

(?t1,?t2,?d)

noValue(?x te:hasDuration ?d) -> (?x te:

hasDuration ?d)]

shows how the Jena rules engine relies on hybrid and forward
chaining techniques respectively to propagate relationships among
classes in a hierarchy (#1), define an entity (#2), and compute and
infer new statements, possibly with the help of built-in functions
(#3). Fig. 7 shows the time reasoning engine architectural block
and excerpts of the implementation of its various modules for
our Dilemma Zone application.

5.5. Semantics support layer: handling of physical quantities and units

The framework enables the branching of semantics extensions
to domains ontological structures wherever it’s needed. In the case
of this application there is a need for our reasoner to properly han-
dle physical quantities. Dimensions (length and time) and units
carried by data characterizing physical and meta properties such
as #hasCarSpeed and #hasDuration in Car and Time ontologies.
This is critical in keeping the reasoning and the ontologies consis-
tent and unambiguous. Both flaws have the potential to lead to
undecidable reasoning. To that aim, we use the Jscience [59] pack-
age to capture and handle the representation, conversion and com-
putation of physical quantities related operations. This enables the
reasoner to properly represent and distinguish, during processing
and rule checking, both dimensions and units. These semantic ser-
vices are provided to the reasoner by calls of Jscience functionality
within custom built-ins functions where needed. Given the current
inability of Jena to directly process dimensions and units, we wrap
them into String datatypes as illustrated on the left-hand side of
Fig. 8.

With this step completed we can proceed to ‘‘local” testing of
individual domain level as per Fig. 5 by populating individual
ontologies with valid instances. The verification of the proper
integration of the Jscience and rules engine is of high interest
here. A successful verification clears the path toward the
integration of various blocks to form the integration layer for our
traffic system.

5.6. Integration layer: integrator semantic block, control strategy and
system level reasoning

Traffic system integrator. As shown in Fig. 8, the traffic system
integrator defines relationships between subdomain entities. It’s a
meta sub-domain of the traffic system that cross-cuts the various
cyber, physical and other meta domain making up the system
and specifies crosscutting system-level properties. This includes
properties related to the metrics used to help characterize the
decision space. Its a separate ontology that simply uses elements
of subsystem ontologies to enable a system-level view of the
traffic system. As a case in point, the excerpt in Fig. 8 shows how
Jena API is used to create and add a new ObjectProperty
#hasTSCarInttXB to the Integrator ontology using elements of the
Car ontology (#CarEntity) as domain and Time ontology
(#ProperTimeInterval) as range. This property defines and associ-
ates a proper (close) time interval to the period of time that a car
travels from location X (when the decision is being made) to the
stop light (location B).

It is important to observe that the integrator operates like a
traffic system ‘‘semantic controller” with its own rules engine
encoding and enforcing system-level rules and calculations that
affect the domains involved in the CPS behavior i.e. car, time and
light. For instance, the excerpt:

[TimeSynchronization: (?x rdf:type ti:

TSController)

(?y rdf:type le:CarLight) (?z rdf:type ce:

CarEntity)

(?x ti:hasTSCurrentTime ?t) noValue(?y le:

hasLightTime ?t)

noValue(?z ce:hasCarTime ?t)

-> (?y le:hasLightTime ?t) (?z ce:hasCarTime ?t)]

shows how the Integrator synchronizes time in the physical
(car) and cyber (light) clocks.

Traffic system: model, control and reasoning strategies. The
efficient reasoning on the system, as a whole requires the integra-
tion of the various ontologies. The overall traffic-system model is
constructed from the merging of individual ontologies, including
the Integrator. We opt for a dynamic import of ontologies to man-
age the stream of data in the system. Thus, domain and integrator
ontologies are added to the empty traffic system ontology as sub-
models, with their top classes as disjoint subclasses of a #Traf-
ficSystemEntity class. A system-level TS rules engine is constructed
by way of union of domain rules engines in a unique file with inte-
grator rules serving both as controller and systems integration
glue. Its configuration mirrors the various branches of the system
decision tree. A predefined Jena reasoner is used to perform infer-
encing because of its support for user-defined rules as well as for-
ward, backward and hybrid chaining execution strategies. The
integration of the units package Jscience with Jena thus as
described in Section 5.5, enables the processing of physical quanti-
ties by the reasoner. This approach to construction of the TS model
has the advantage of preserving the CPS view of the system while
enabling deep insight in the connections and relationships
between the domains. This is critical to uncovering and under-
standing mechanisms through which unsafe situations within the
dilemma zone occur, while also providing support for efficient
decision making.

5.7. Application layer: instantiation and testing the traffic system
reasoning framework

In order to evaluate the effectiveness of the traffic system frame-
work, we test it as a stand alone platform. We instantiate the onto-
logical structure by populating the system with car and light
entities and minimal data characterizing their basic properties.
We are particularly interested in configurations of the system for
which it reaches one of the four unsafe states. We verify that the
reasoner is able to accurately: (1) predict this occurrence, and (2)
reconfigure itself (actually the light) to enable safe crossing of the
intersection when the car doesn’t have a viable solution

Fig. 8. Illustration of the construction mechanism of the traffic system integrator ontology.

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 89
(NO_GOOD). To exercise the system, we pick a #2004FordTau-
rusSES (Sedan) weighing around 1.5 ton and approaching an inter-
section at 30 m/s. The remaining duration of the yellow light at the
time the decision is taken is rYL ¼ 9 s on a total duration of
dYL ¼ 15 s. Combined with other parameters (e.g., stopping dis-
tance, braking force, other lights durations, etc.), the traffic system
reasoner is able to infer that the vehicle systemwill enter an unsafe
state, region IV in this case. The screen capture in Fig. 9 shows how
the traffic system controller improves decision making in the
dilemma zone by allocating extra time i.e., DH = 2 s in the length
of the yellow light, which is the time needed by the car to cross
the intersection safely. The new system metrics are calculated to
account for the change and ensure the integrity of the duration of
the cycle of the stop light. Therefore, the car is no longer projected
to violate the red light when it reaches the intersection, it’s now in
region V which is a safe spot in the decision space.

6. Conclusions and future work

In this paper we have introduced a new ontological-based
knowledge and reasoning framework for decision support for
CPS. The framework enables the development of determinate CPS
models with metadomain (e.g., temporal, spatial, etc.) and
domain-specific semantics strengthening the model-driven
approach to CPS design. Key features of the framework include:
(1) a common data and information processing layer, which helps
in overcoming the barrier of heterogeneity of domains and physics
in CPS, and (2) the use of logic-based Description Logics (DL)
semantics and rules-based reasoning. Together, these capabilities
enable the conversion of data to knowledge, their effective use
for efficient decision making and the realization of system-level
properties such as safety. An investigation into the structure of
basic DLs has led us to the identification of semantic extensions
needed to efficiently support the web ontology language (OWL)
as the ontological language for our framework. The resulting DL
ie SROIQ has been found to be the most appropriate as it maps
to OWL 2 and ensures its decidability. Thus, the formal description
of the knowledge system for the CPS of interest as well as correct,
stable, complete and terminating reasoning algorithms are guaran-
teed with this SROIQ-backed language. Also, the framework is
modular and, thus, provides the designer with flexibility and ease
of configuration. Finally, it provides interfaces for semantic exten-
sions and computational support, including the ability to handle
quantities for which dimensions and units are semantic parame-
ters in the physical world.

Future work needs to consider the development of a component
modeling framework (front end) and its mapping to the ontological
framework (back end) as systems engineers and modelers are not
familiar with knowledge infrastructures such as the one intro-
duced in this paper. Also, there is a need to develop a more general
and inclusive approach to requirements elicitation that can
account for safety concerns associated with human–machine inter-
faces, human reliability, delays, and failure mechanisms in soft-
ware intensive systems, thus, broadening the scope of safety

Fig. 9. Reconfiguration of the light to get the car out of an unsafe region.

90 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
requirements beyond a single one as we did in the case study.
Systems-theoretic accident model and process and/or systems-
theoretic process analysis (STAMP/STPA) [60] is a good supportive
approach. We should also account for uncertainties in reasoning
processes [61,62] especially data, reasoning mechanisms and tim-
ing uncertainties. Support for probabilistic reasoning [63,64],
Fuzzy logic reasoning or truth maintenance [65] are possible path-
ways forward.

Acknowledgement

The work reported here is part of a US National Institute of
Science and Technology (NIST) funded program dedicated to the
development of standards for CPS design, modeling, construction,
verification and validation.

Appendix A. Description logics and ALC extension

Basic description logics: Description logics are a family of
logic-based knowledge representation formalisms that can
describe domain in terms of concepts (e.g., classes in OWL), roles
(e.g., properties, relationships) and individuals (e.g., objects). As a
subset of first-order logics (FOL), they provide well-defined seman-
tics supporting decidability and development of efficient reasoning
algorithms. The acronym AL stands for attribute language (see
Appendix 1 of Baader [36] for details on naming scheme for DLs).
When a basic DL serves as a foundation for knowledge representa-
tion, many other DLs may be constructed through the addition of
specific extensions. One such extension is the attribute language
concepts (ALC). The benefit of this extension mechanism is that
is allows for the specification of languages supporting new fea-
tures. For example, atomic concepts (A) can be extended to support
arbitrary concepts (C), thereby enabling the description of any
domain of interest. A second important extension is the number
restriction N which leads to ALCN DL.” This is a subset of the
frame-based DL FL and is equivalent to AL, but without atomic
negation, inverse, transitive roles and subroles or concrete
domains [66,67]. As we will soon see, these extensions and restric-
tions are needed to make the language decidable with low com-
plexity, a strategy that is supported by Lutz [68], who identifies
ALC as the most appropriate DL for reasoning with concrete
domains.

The ALC description logics: In this DL, the operators universal
(8), existential (9), intersection (u), Union (t), negation (:) can be
properly applied to atomic (A, Ai,..), arbitrary (C, D,..), top (>) (i.e.,
All concepts names) and bottom (?) (i.e., Empty concept) concepts.
Primitive relations (r, s, . . .) as well as existential restriction (9r:C)
and value restriction (8r:C) on concepts are other key constructors
used to formally define a domain of interest. The complete set of
defined concepts of the basic ALC system can be represented by
the following grammar:

C :¼ >j ? jAj:CjC u DjC t Dj8r:Cj9r:C
For instance, the statement ‘‘A woman who is single and whose chil-
dren are either boy or girl” can be expressed in DL using a minimal
number of concepts as follows.

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 91
Human u : Male u 8hasChild:ðBoy t GirlÞ:
In DL, semantics are defined by interpretations. In the case of ALC,
an interpretation I is formally defined as follows [69]:

Definition 1 (Interpretation). An interpretation I ¼ ðMI; :IÞ con-
sists of a non-empty set MI, called the domain of I, and a function
:I that maps every ALC� concept to a subset of MI, and every role
name to a subset of MI � MI such that, for all ALC� concepts C, D
and all role names r,

>I ¼ MI;?I ¼ £

ðC u DÞI ¼ CI \ DI; ðC t DÞI ¼ CI [DI;:CI ¼ MI n CI;

ð9r:CÞI ¼ fx 2 MIj9y 2 MI with < x; y >2 rI and y 2 CIg
ð8r:CÞI ¼ fx 2 MIj8y 2 MI; if < x; y >2 rI; then y 2 CIg
x and y are instances of C in the interpretation I.

Concept descriptions are used to build statements in a DL
knowledge base in accordance to the semantics provided by the
interpretation.

Fig. A.10 shows that the knowledge base (KB) is typically made
up of two parts: (1) A terminological part or TBox, and (2) An asser-
tional part called ABox.

Definition 2 (TBox). A TBox T is a finite set of general concept
inclusion (GCI). A GCI is of the form C v D where C, D are
ALC� concepts. When C � D the corresponding pair of GCI C v D
and D v C are symmetrical. If C is a concept name, then the axiom
C � D is called a definition. An interpretation I is a model of a GCI
C v D if CI #DI; I is a model of a TBox T if it is a model of every
CGI in T .

A TBox T can be definitorial (also called an acyclic TBox), i.e., it
contains only definitions along with certain restrictions. In this
case, concept names in left-hand side of T are ‘‘defined concepts”
while concepts in the other side are ‘‘primitive concepts.”

Definition 3 (ABox). An ABoxA is a finite set of assertional axioms
of the form x: C or (x,y): r, where C is an ALC� concept, r is an
ALC� role, and x and y are individual names. An interpretation I

is a model of an assertional axiom x: C if xI 2 CI and I is a model of
an assertional axiom (x,y): r if ðxI; yIÞ 2 rI;I is a model of an
ABox A if it is a model of every axiom in A.

These definitions equip us with the necessary elements to for-
mally define the notion of knowledge base introduced above.

Definition 4 (Knowledge base). A knowledge base (KB) is a pair
ðT ;AÞ where T is a TBox and A is an ABox. An interpretation I is a
model of a KB K ¼ ðT ;AÞ if I is an interpretation of T and I is a
model of A.
Fig. A.10. High level architecture of a knowledge representation system based on
description logics. Source: [36].
We write I � K , (I � T ;I � A) to denote that I is a model
of a KB K (respectively, TBox T , ABox A).

A summary of the main DL concept constructors is shown in
Fig. A.11.

Appendix B. DL extensions for OWL2

1. Role hierarchy (H): Hierarchies between roles are allowed in
this extension. This results into the ALCH or SH DL formalism
that is a translation of foundational OWL. In turn, there are
three OWL sublanguages with increasing expressiveness:
OWL-Lite, OWL-DL and OWL-Full (no syntactic constraints).
More precisely, the DL TBox along with the role hierarchy
extension map to the OWL (Lite or DL) ontology. In OWL, the
domain of interest is defined in term of classes related to each
other by properties. These entities correspond respectively to
concepts and roles in SH DL.
As an illustration, the DL statement hasColor:CarColor
v hasCarDescriptor can be translated into OWL as follows:

<owl:ObjectProperty rdf:about="#hasColor">
<rdfs:subPropertyOf rdf:resource="#hasCarDe

scriptor"/>
<rdfs:range rdf:resource="#CarColor"/>

</owl:ObjectProperty>

The properties here are of type object, but they could also be of type
data depending on the domain and application need.
2. Nominal (O): In this DL extension, use of the nominal construc-

tor {} allows for the definition of singleton sets (i.e., as concepts)
from individual names. The corresponding restriction in OWL is
achieved with the object property elements owl:oneOf and owl:
hasValue.
Let us suppose that we are given an ‘‘individual” V6. We can use
this extension to define all cars that are equipped with this par-
ticular engine type as follows.
Car u 9hasEngine:fV6g
This can be translated in OWL using the constructor owl:hasVa-
lue as follows.

<owl:Class rdf::about="#Engine">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasEngine"/>
<owl:hasValue rdf:resource="#V6"/>

</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

An important limitation of nominals [69] is that is can dramatically
increase the complexity of reasoning processes.
3. Inverse and transitive roles (I): This extension is needed to

increase the expressiveness of the DL. Inverse and transitive
roles are expressed in OWL using the object properties owl:in-
verseOf and owl:TransitiveProperty.
For instance, makeCar � hasMaker� and can be expressed in
OWL as follows.

<owl:ObjectProperty rdf:about="#makeCar">
<owl:inverseOf rdf:resource="#hasMaker"/>

</owl:ObjectProperty>

Fig. A.11. Summary of description logic concepts constructors [36].

92 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
The procedure for expressing that an object property is transitive is
as follows:

<owl:ObjectProperty rdf:about="#hasFollower">
<rdf:type rdf:resource="#TransitiveProperty"/>
<rdfs:domain rdf:resource="#Car"/>
<rdfs:range rdf:resource="#Car"/>

</owl:ObjectProperty>

4. Cardinality/number restriction (N): This extension allows for
the formal expression of the number of relationships that indi-
viduals of specific types can have among them, a feature that is
particularly relevant to CPS modeling.
For example, the statement A car has at most one engine can be
written as follows.
Car v6 1hasEngine

Additional syntax elements and their corresponding semantics
are shown in Fig. A.11.

5. Qualified number restrictions (Q): This extension is similar to
the previous one with the difference that we can describe indi-
vidual types that are counted by a given number of expressions,
which allows for representation of the notion of a ‘‘data inter-
val.”
To see how this works in practice, we can extend the definition
of a car to allow for two through five doors. The corresponding
logical expression is:
Car�Vehicleu 6 1hasEngine u ðP2hasDooru 6 5hasDoorÞ
6. Role restrictions (R): This extension completes the I DL by
providing role inclusion axioms as well as support for reflexiv-
ity, symmetry and roles disjointness. In OWL, these features
show up as the property characteristics owl:reflexive, owl:ir-
reflexive, owl:symmetry, owl:functional and owl:disjointWith.
The fragment of code:

<owl:ObjectProperty rdf:about="#hasFollower">
<rdf:type rdf:resource="#TransitiveProperty"/>
<rdf:type rdf:resource="#IrreflexiveProperty"/>
<rdf:type rdf:resource="#AsymmetricProperty"/>
<owl:disjointWith rdf:resource="#hasPredeces

sor"/>
<rdfs:domain rdf:resource="#Car"/>
<rdfs:range rdf:resource="#Car"/>

</owl:ObjectProperty>

illustrates the use of these characteristics for a more precise
specification of the aforementioned hasFollower object
property.

7. Concrete domains: This extension provides support for the
handling of concrete sets (real numbers, integers, strings, etc.)
and concrete predicates (numerical comparisons, string compar-
isons and comparisons with constants) on these sets.

Appendix C. Reasoning services for SROIQ-based ontologies

The SROIQ description logics that support OWL 2 are intro-
duced in Krotzsch [70] and are thoroughly detailed in Horrocks
[43]. Here, SR ¼ ALC + role chains (R), O = nominals (closed
classes), I = support for inverse rules, and Q = qualified cardinality
restrictions. We note the extension of the grammar to include role
expressions R :¼ UjNRjN�

R where NR is the set of role names and U
is the universal role. Also, alongside the TBox and ABox, the RBox is
an integral part of SROIQ axioms.

Thus, from the grammar

L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94 93
C :¼ NC jC u CjC t Cj:Cj>j ? j8R:Cj9R:Cj P nR:Cj
6 nR:Cj9R:Self jfNIg

where n is a non-negative integer, C u C representing expressions of
the form C u D with C, D 2 C and fNIg are individual names, SROIQ
axioms are defined as follows.

ABox : CðNIÞ RðNI;NIÞ NI � NI NI 6�NI

TBox : C v C C � C
RBox : R v R R � R R � R v R DisjointðR;RÞ
When applied to any given SROIQ-based ontology, this set of
axioms creates a knowledge base K ¼ ðT ;AÞ for the domain being
modeled. However, when applicable, the following reasoning tasks
are required with regard to the TBox T and ABox A [71]:

Definition 5 (Satisfiability). A concept C is satisfiable w.r.t. a TBox

T if there exists an interpretation I � T such that CI –£.

Similarly, an ABox A is satisfiable w.r.t. a TBox T if there exists
an interpretation I � T [A.

Definition 6 (Subsumption). A concept C is subsumed by D (CvTD)

with C, D 2 C if for all interpretations I, if I � T then CI #DI .
Definition 7 (Equivalence). Two concepts C and D (C, D 2 C) are
equivalent with respect to T if for all interpretations I, if I � T

then CI ¼ DI .
Definition 8 (Disjointness). Two concepts C and D (C, D 2 C) are
disjoint with respect to T if for all interpretations I, if I � T then
CI \ DI ¼ £.

The reasoner should be able to systematically decide on the
existence and satisfaction of these characteristics and assert (or
infer) new facts and statements that are added to the knowledge
base K . However, reasoning over K in its wholeness is very ineffi-
cient. Fortunately, it has been proven that there are ways to reduce
the complexity of reasoning to polynomial order through elimina-
tion of ABox and TBox axioms/concepts. This advance is formulated
in the following results [43,71]:

Proposition 1 (Satisfiability w.r.t. TBox). Subsumption, equivalence,
and disjointness with respect to T are reducible to testing (un)
satisfiability w.r.t. T .
Lemma 1 (ABox Elimination). SROIQ concept satisfiability with
respect to ABoxes, RBoxes, and TBoxes is polynomially reducible to
SROIQ concept satisfiability with respect to RBoxes and TBoxes only.

Similar result is formulated for the elimination of both the TBox and
Universal Role thus, the following theorem addressing reduction.
Theorem 1 (Reduction).

1. Satisfiability and subsumption of SROIQ-concepts w.r.t. ABoxes,
RBoxes, and TBoxes are polynomially reducible to (un) satisfiability
of SROIQ-concepts w.r.t. RBoxes.

2. Without lost of generality, we can assume that RBoxes do not con-
tain role assertions of the form Irr(R), Tra(R), or Sym(R), and that
the universal role is not used.

This result reduces the standard SROIQ (concepts and ABoxes)
inference problem to the one of determining the consistency of a
SROIQ-concept with respect to a reduced RBox where all role
assertions are of the form Ref(R) or Dis(R,S). Krotzsch [70] also points
out the need for ‘‘structural restrictions” on SROIQ-based ontologies
as a whole in order to guarantee the existence of correct and
terminating algorithms to support inferencing. We note that the first
restriction, simplicity is concerned with non-simple roles resulting
from roles composition. Second, regularity is concerned with RBox ax-
ioms. The main goal of such restrictions is to limit the occurrence of
cyclic dependencies between complex roles and inclusion axioms (i.e.,
see the OWL constructor owl:SuperPropertyOf (chain)). Horrocks et al.
[43] build on these results to develop and describe a terminating,
sound, and complete tableau-based algorithm that decides the
consistency of a SROIQ-concepts with respect to a reduced RBox.
Theorem 2 (Decidability). The tableau algorithm decides satisfiabil-
ity and subsumption of SROIQ-concepts with respect to ABoxes,
RBoxes, and TBoxes.
References

[1] P. Marwedel, Embedded System Design: Embedded systems Foundations of
Cyber-Physical Systems, second ed., Springer, 2011.

[2] C. Myers, A Modeling and Verification of Cyber-Physical Systems, Design
Automation Summer School, University of Utah, 2011.

[3] NIST, Strategic R&D Opportunities for 21st Cyber-physical Systems:
Connecting Computer and Information Systems with the Physical World,
National Institute of Science and Technology (NIST), Gaithersburg, MD, USA,
2013.

[4] NIST, Strategic Vision and Business Drivers for 21st Century Cyber-physical
Systems, National Institute of Science and Technology (NIST), Gaithersburg,
MD, USA, 2013.

[5] P. Derler, E.A. Lee, A.L. Sangiovanni-Vincentelli, Addressing Modeling
challenges in Cyber-Physical Systems, Technical Report N0. UCB/EECS-2011-
17, Electrical Engineering and Computer Sciences University of California
Berkeley, 2011.

[6] J. Sztipanovits, T. Bapty, G. Karsai, S. Neema, Model-Integration and Cyber
Physical Systems: A Semantic Perspective, Keynote at FM 2011, Limerick,
Ireland, 2011.

[7] E.A. Lee, CPS Foundations, DAC10, Anaheim, California, USA, 2010.
[8] E.A. Lee, Cyber-physical systems: a rehash or a new intellectual challenge?, in:

Invited Talk in the Distinguished Speaker Series, Design Automation
Conference (DAC), Austin, TX, 2013.

[9] J. Doyle, Feedback Control Theory, Class Notes, CDS 212, Fall 2011, 2011.
<https://www.cds.caltech.edu/wiki/index.php/>.

[10] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng, Heterogeneous
Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy
II), Tech. Rep. ECB/EECS-2008-28, Department Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA, April 2008.

[11] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,
Springer, Berlin, 1992.

[12] A. Cataldo, E.A. Lee, X. Liu, E. Matsikoudis, H. Zheng, A Constructive Fixed-Point
Theorem and the Feedback Semantic of Timed Systems, Workshop on Discrete
Event Systems (WODES), Ann Arbor, Michigan, 2006. <http://ptolemy.eecs.
berkeley.edu/publication/papers/06/constructive/>.

[13] J.C. Jensen, D.H. Chang, E.A. Lee, A model-based design methodology for cyber-
physical systems, in: IEEE Workshop on Design, modeling, and Evaluation of
Cyber-Physical Systems (CyPhy), Istanbul, Turkey, 2011.

[14] A. Bhave, B. Krogh, D. Garlan, B. Schmerl, Multi-domain Modeling of Cyber-
Physical Systems Using Architectural Views, Dept. of Electrical & Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, 2010.

[15] N. Cutland, Computability: An Introduction to Recursive function Theory,
Cambridge University Press, Cambridge, MA, 1997.

[16] E.A. Lee, The Problem with Threads, EECS Department, University of California
at Berkeley, Berkeley, CA, 2006.

[17] B. Lampson, Getting computers to understand, J. Assoc. Comput. Mach. (JACM)
50 (2003) 70–72.

[18] A.M. Turing, On computable numbers, with application to the
Entscheidungsproblem, Proc. Lond. Math. Soc. 2 (42) (1936) 230–265.

[19] M. Sipser, The halting problem, in: Introduction to the Theory of computation,
second ed., PWS Publishing, 2005, pp. 173–182. ISBN 0-534-94728-X.

[20] H. Graves, Current state of Ontology in Engineering Systems, OMG: Ontology
Action Team, 2012. <www.omgwiki.org/MBSE/oku.php?id>.

[21] M. Yoshiokaa, Y. Umedab, H. Takedac, Y. Shimomurad, Y. Nomaguchie, T.
Tomiyama, Physical concept ontology for the knowledge intensive engineering
framework, Adv. Eng. Inform. (2004).

[22] F. Song, G. Zacharewicz, D. Chen, An ontology-driven framework towards
building enterprise semantic information layer, Adv. Eng. Inform. (2013).

[23] J. Nanda, T.W. Simpson, S.R. Kumara, S.B. Shooter, A methodology for product
family ontology development using formal concept analysis and web ontology
language, J. Comput. Inform. Sci. Eng. ASME 6 (2006) 103–113.

http://refhub.elsevier.com/S1474-0346(16)30003-9/h0005
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0005
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0005
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0010
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0010
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0010
http://https://www.cds.caltech.edu/wiki/index.php/
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0055
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0055
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0055
http://ptolemy.eecs.berkeley.edu/publication/papers/06/constructive/
http://ptolemy.eecs.berkeley.edu/publication/papers/06/constructive/
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0075
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0075
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0075
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0085
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0085
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0090
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0090
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0095
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0095
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0095
http://www.omgwiki.org/MBSE/oku.php?id
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0105
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0105
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0105
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0110
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0110
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0115
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0115
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0115

94 L. Petnga, M. Austin / Advanced Engineering Informatics 30 (2016) 77–94
[24] C.E. Bock, X. Zha, H. Suh, J.H. Lee, Ontological product modeling for
collaborative design, Adv. Eng. Inform. (2010).

[25] G. La Rocca, Knowledge-based engineering: between AI and CAD. Review of a
language-based technology to support engineering design, Adv. Eng. Inform.
(2012).

[26] W. Shen, Q. Hao, H. Mak, J. Neelamkavil, H. Xie, J. Dickinson, R. Thomas, A.
Pardasani, H. Xue, Systems integration and collaboration in architecture,
engineering, construction, and facilities management: a review, Adv. Eng.
Inform. (2010).

[27] M. Quillian, Semantic memory, in: M. Minsky (Ed.), Semantic Information
Processing, MIT Press, 1968, pp. 227–270.

[28] J.F. Sowa, A. Borgida, Principles of semantic networks: explorations in the
representation of knowledge, in: John F. Sowa (Ed.), 1991.

[29] J. Allen, A. Frisch, What’s in a Semantic Network, 20th. Annual Meeting of ACL,
Toronto, 1982, pp. 19–27.

[30] M. Minsky, A Framework for Representing Knowledge, Technical Report, MIT-
AI Laboratory, Massachusetts Institute of Technology Cambridge, MA, USA,
1974.

[31] R.J. Brachman, H.J. Levesque, The tractability of subsumption in frame-based
description languages, in: 4th National Conference of the American
Association for Artificial Intelligence (AAAI-84). Austin, TX, 1984, pp. 34–37.

[32] P.J. Hayes, The logic of frames, in: D. Metzing (Ed.), Frame Conceptions and
Text Understanding, deGruyter, Berlin, 1980, pp. 46–61.

[33] J.F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1984. ISBN 978-0-201-14472-7.

[34] M. Pavlic, A. Mestrovic, A. Jakupovic, Graph-based formalisms for knowledge
representation, in: 17th World Multi-Conference on Systemics, Cybernetics
and Informatics, July 9–12, Orlando, Florida, USA, 2013.

[35] M. Chein, M.-L. Mugnier, Graph-Based Knowledge Representation:
Computational Foundations of Conceptual Graphs, first ed., Springer
Publishing Company, Incorporated, 2008.

[36] F. Baader, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider, The Description
Logic Handbook: Theory, implementation, and applications, Cambridge,
2003.

[37] G. De Giacomo, M. Lenzerini, Concept language with number restrictions and
fixpoints, and its relationship with mu-calculus, in: 11th European Conference
on Artificial Intelligence (ECAI), John Wiley and Sons, Ltd., 1994.

[38] K. Schild, Terminological cycles and the propositional with mu-calculus, in: J.
Doyle, E. Sandewall, P. Torasso (Eds.), 4th Int. Conference on the Principle of
Knowledge Representation and Reasoning (KR-94), 1994, pp. 509–520.

[39] Semantic Web Activity, 2013. <http://www.w3.org/2001/sw/>.
[40] P.F. Patel-Schneider, P. Hayes, I. Horrocks, OWL Web Ontology Language

Semantics and Abstract Syntax, Recommendation, W3C, 2004. <http://www.
w3.org/TR/owl-semantics/>.

[41] F. Baader, I. Horrocks, U. Sattler, Description logics as ontology languages for
the semantic web, in: Dieter Hutter, Werner Stephan (Eds.), Mechanizing
Mathematical Reasoning: Essays in Honor of Jrg Siekmann on the Occasion of
His 60th Birthday, Lecture Notes in Artificial Intelligence, vol. 2605, Springer,
2005, pp. 228–248.

[42] B.C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2:
the next step for OWL, J. Web Semant.: Sci. Serv. Agents World WideWeb 6 (4)
(2008) 309–322.

[43] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible SROIQ, in: 10th
International Conference on Principles of Knowledge Representation and
Reasoning (KR 2006), AAAI Press, 2006, pp. 57–67.

[44] L. Petnga, M.A. Austin, Ontologies of time and time-based reasoning for MBSE
of cyber-physical systems, in: 11th Annual Conference on Systems Engineering
Research (CSER 2013), Georgia Institute of Technology, Atlanta, GA, 2013.
[45] N. Choi, I.Y. Song, H. Han, A Survey on Ontology Mapping, SIGMOD Rec, 2006,
pp. 34–41.

[46] T. Menzies, Applications of abduction: knowledge-level modeling, Int. J.
Human Comput. Stud. 45 (1996) 305–335.

[47] L. Console, D.T. Dupre, P. Torasso, On the relationship between abduction and
deduction, J. Logic Programm. 1 (1991) 661–690.

[48] P.K. Praitosh, The Heuristic Reasoning Manifesto, Qualitative Reasoning Group,
Electrical and Computer Science, Northwestern University, Evanston IL 60208,
USA, 2006.

[49] P.R. Cohen, M.R. Grinberg, A theory of heuristic reasoning about uncertainty, AI
Mag. 4 (2) (1983) 17–24.

[50] L. Elder, R. Paul, Thinkers Guide to Understanding the Foundations of Ethical
Reasoning, Foundation for Critical Thinking, 2013.

[51] A.A.C.U, Ethical Reasoning Value Rubric, Association of American Colleges &
Universities (AACU), 2010.

[52] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, Y. Katz, Pellet: a practical OWL-DL
reasoner, Web Semant.: Sci. Serv. Agents World Wide Web 5 (2) (2007) 51–53.

[53] L. Petnga, M.A. Austin, Semantic platforms for cyber-physical systems, in:
24nd Annual International Symposium of The International Council on
Systems Engineering (INCOSE 2014), Las Vegas, Nevada, 2014.

[54] D. Hurwitz, The ‘‘Twilight Zone” of Traffic Costs Lives at Stoplight
Intersections, Oregon State University, Corvallis, Oregon, USA, 2012.

[55] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26
(11) (1983) 832–843.

[56] L. Petnga, M.A. Austin, Cyber-physical architectures for modeling and
enhanced operations of connected-vehicle systems, in: 2nd International
Conference on Connected Vehicles (ICCVE 2013), Las Vegas, Nevada, 2013.

[57] Apache Jena, 2013. <http://www.jena.apache.org>.
[58] Time Ontology in OWL, 2006. <http://www.w3.org/TR/owl-time/>.
[59] Jscience, 2013. <http://www.jscience.org>.
[60] N. Leveson, A systems-theoretic approach to safety in software-intensive

systems, IEEE Trans. Dependable Secure Comput. 1 (2004) 66–86.
[61] T. Zuk, S. Carpendale, Visualization of uncertainty and reasoning, in: A. Butz

et al. (Eds.), SG 2007, LNCS, 4569, Springer-Verlag, Berlin, Heidelberg, 2007, pp.
164–177.

[62] J.Y. Halpern, Reasoning About Uncertainty, second ed., Ain A. Sonin, 2005.
[63] S.J. Russell, P. Norvig, Artificial Intelligence, first ed., A Modern Approach,

Prentice Hall, Englewood Cliffs, New Jersey 07632, 1995.
[64] P. Klinov, Practical Reasoning in Probabilistic Description Logic, Ph.D. Thesis,

School of Computer Science, University of Manchester, 2011.
[65] M. Huntbach, Notes on Reasoning with Uncertainty, Class Notes, Artificial

Intelligence I, Queen Mary and Westfield College, London, 1996.
[66] F. Baader, P. Hanschke, A scheme for integrating concrete domains into

concept languages, in: J. Doyle, E. Sandewall, P. Torasso (Eds.), 12th
International Joint Conference on Artificial Intelligence (IJCAI91), 1991, pp.
452–457.

[67] I. Horrocks, U. Sattler, A description logic with transitive and inverse roles and
role hierarchies, J. Logic Comput. 9 (3) (1999) 385–410.

[68] C. Lutz, The Complexity of Reasoning with Concrete Domains, LTCS-Report 99-
01, Aachen university of Technology Research group for Theoretical Computer
Science, 1999.

[69] F. Baader, I. Horrocks, U. Sattler, Description logics, in: F. van Harmelen, V.
Lifschitz, B. Porter (Eds.), Handbook of Knowledge Representations, Elsevier,
2008, pp. 135–180 (Chapter 3).

[70] M. Krtzsch, F. Simanck, I. Horrocks, A Description Logic Primer, Department of
computer Science, University of Oxford, UK, 2013. Version 1.2.

[71] N. Olivetti, Artificial Intelligence: Introduction to Description Logics, INCA-
LSIS, Paul Cezanne university, Marseille, France, 2009.

http://refhub.elsevier.com/S1474-0346(16)30003-9/h0120
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0120
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0125
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0125
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0125
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0130
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0130
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0130
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0130
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0135
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0135
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0135
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0135
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0160
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0160
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0160
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0160
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0165
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0165
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0165
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0175
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0175
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0175
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0175
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0185
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0185
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0185
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0185
http://www.w3.org/2001/sw/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0205
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0210
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0210
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0210
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0215
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0215
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0215
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0215
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0230
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0230
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0235
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0235
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0245
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0245
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0260
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0260
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0270
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0270
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0270
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0270
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0275
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0275
http://www.jena.apache.org
http://www.w3.org/TR/owl-time/
http://www.jscience.org
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0300
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0300
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0305
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0305
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0305
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0305
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0305
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0310
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0310
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0315
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0315
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0315
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0335
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0335
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0345
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0345
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0345
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0345
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0345
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0345
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0345
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0350
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0350
http://refhub.elsevier.com/S1474-0346(16)30003-9/h0350

	An ontological framework for knowledge modeling and decision support in cyber-physical systems
	1 Introduction
	2 CPS knowledge modeling and ontologies
	2.1 CPS: overview and key characteristics
	2.2 Semantic challenges in CPS modeling and analysis
	2.3 Requirements on CPS models for decision making
	2.4 Ontologies for Model Based System Engineering (MBSE) of CPS

	3 Description logic semantics and support for reasoning
	3.1 Knowledge representation formalisms
	3.2 Description logics extensions for the web ontology language (OWL)
	3.3 Reasoning support for [$]{\cal{SROIQ}}[$]‐based ontologies

	4 Framework for modeling CPS knowledge and reasoning support
	4.1 System overview
	4.2 From data to knowledge: domain-specific ontologies and semantic support
	4.3 From knowledge to model: system integration and CPS knowledge model build-up
	4.4 Reasoning for decision support

	5 Case study: A traffic light time-based reasoning system
	5.1 Overview of the case and set up
	5.2 Dilemma zone problem, decision and reasoning problems formulation
	5.3 Jena-based modeling of the Traffic System as a CPS: system architecture
	5.4 Domains layer: light, car and time ontologies semantic blocks
	5.5 Semantics support layer: handling of physical quantities and units
	5.6 Integration layer: integrator semantic block, control strategy and system level reasoning
	5.7 Application layer: instantiation and testing the traffic system reasoning framework

	6 Conclusions and future work
	Acknowledgement
	Appendix A Description logics and [$]{\cal{ALC}}[$] extension
	Appendix B DL extensions for OWL2
	Appendix C Reasoning services for [$]{\cal{SROIQ}}[$]‐based ontologies
	References

