
Airspace Management Decision Tool for Use at a Small Airport

Kerin Thornton
ENPM642

Spring 2005

Table of Contents

Introduction
 Problem Statement
 Assumptions

Goals, Scenarios, and Use Cases
 Goals & Scenarios
 Initial Use Case Diagram

Use Case Text and Activity Diagrams

Generation of Requirements
 High Level Requirements
 Requirements Traceability

System Structure and System Behavior
 High Level Structure
 System Models

Structural Design of Program Code
 MATLAB Code
 MATLAB Output

Conclusions & Future Work

Introduction:

Problem Statement
Even at small airports, air traffic controllers must maintain a constant awareness of a dynamic
situation, which can be enough of a workload to affect decision-making. Any misinterpretation of
a given situation may lead to a wrong decision, which has the potential for disaster. The scope of
this project is to create a model-based program which air traffic controllers at small airports may
use to track aircraft positions, and issue orders accordingly.

Consider the case of a shift-change in an air traffic control tower. With a tool such as this one, the
outgoing controller has entered into the program the locations of all aircraft currently under his or
her control. When the incoming controller inherits these aircraft, all he or she has to do is enter the
next incoming pilot request into the program, which outputs appropriate action in accordance with
the request. Assuming the controller issues orders according to this output, the program is updated
to reflect the new current situation.

Assumptions
The scope of this project will assume the following:

• The airspace immediately surrounding the airport’s holding pattern is of an unlimited
capacity. This is where planes make the request to enter the holding pattern upon approach.

• Once a plane has taken off, it has cleared the airspace and is no longer under the tower
control.

• Only one plane may be in the holding pattern at a given time.
• Only one plane may be on the runway at a given time (to take off, or land).
• The airport owns two taxiways. Planes may taxi to the runway and taxi to the gate

simultaneously.
• Only one plane may be at the gate at a given time.
• ATC may only receive one request at a time.
• The controller may issue an order to a pilot who has not made a request
• Once an issue has been ordered to a pilot, the action is carried out instantaneously.

 TERMINAL
 GATE

TOWER

RUNWAY

HOLDING
PATTERN

Flow of Events:
Plane must request to enter holding pattern (airspace on approach.)
Upon permission, plane enters holding pattern.
Plane must request to land.
Upon permission, plane lands and taxis to the gate.
Plane must request to leave gate.
Upon permission, plane taxis and takes off.

Goals, Scenarios, and Use Cases:

Goals & Scenarios
The goal of this Airspace Management Decision Tool is to automate the Air Traffic Controller’s
decision-making process by modeling the current locations of all aircraft under tower control. The
following scenarios define the possible aircraft positions and the corresponding pilot requests that
the controller could receive.

• Scenario 1. There are no planes under tower control.

o Scenario 1.1. Pilot in the surrounding airspace requests tower approval to enter the
holding pattern.

• Scenario 2: There is one plane in the holding pattern, no planes at the gate.

o Scenario 2.1. Pilot in the surrounding airspace requests tower approval to enter the
holding pattern.

o Scenario 2.2 Pilot in the holding pattern requests tower approval to land and taxi to
the gate.

• Scenario 3: There are no planes in the holding pattern, one plane at the gate.

o Scenario 3.1 Pilot in the surrounding airspace requests tower approval to enter the
holding pattern

o Scenario 3.2 Pilot at the gate requests tower approval to taxi to the runway and take
off.

• Scenario 4: There is one plane in the holding pattern, one plane at the gate.

o Scenario 4.1 Pilot in the surrounding airspace requests tower approval to enter the
holding pattern

o Scenario 4.2 Pilot in the holding pattern requests tower approval to land and taxi to
the gate.

o Scenario 4.3 Pilot at the gate requests tower approval to taxi to the runway and take
off.

Initial Use Case Diagram

Issue
Request

Pilot

Controller

Management
Tool

Operate
Aircraft

Issue Order

Input Data

Process
Data

Output
Order

Use Case Text and Activity Diagrams

Use Case 1. Input Data
Primary Actor: Controller

Flow of Events:

1. For every aircraft currently within the airport’s jurisdiction, the controller makes an
entry and specifies location.

Alternative Flow of Events:

2. The controller’s shift ends, and another controller assumes control of the situation.
Post-condition:
Assumption:.

An activity diagram for this use case is given below:

Enter
Aircraft
Location

Enter
Aircraft
Location

Use Case 2. Issue Request
Primary Actor: Pilot
Description: Pilot requests entry into the next airport location.
Pre-conditions: There exists an air-to-ground communications link between the tower and the
aircraft that complies with all applicable regulations.
Flow of Events:

1. Pilot activates communications link to tower

2. Pilot achieves contact with controller.

3. Pilot requests approval to enter next phase.

Alternate Flow of Events:

4. Pilot does not achieve contact with the controller because the controller is already in
contact with another pilot.

Post-condition:
Assumption:

Activity diagram for this use case is given as below:

Contact
Tower

Controller busy?
Yes

No

Issue
Request

Contact
Tower

Controller busy?
Yes

No

Issue
Request

Use Case 3. Data Processing
Primary Actors: Controller, Decision Management Tool
Description: Decision Management Tool outputs action according to Controller input
Pre-conditions:.
Flow of Events:

1. Controller receives pilot request
2. Controller enters pilot request into system
3. Decision Management Tool processes request
4. Decision Management Tool outputs controller action

Post-condition:
Assumption:

Activity diagram for this use case is given as below:

Controller Decision Management Tool

Enter Pilot
Request

Process
Request

Output
Action

Controller Decision Management Tool

Enter Pilot
Request

Process
Request

Output
Action

Use Case 4. Issue Order
Primary Actor: Controller, Pilot
Description: The controller issues an order to the pilot. Pilot maneuvers accordingly.
Pre-conditions: A pilot operating an aircraft under the jurisdiction of the tower has made
a request to advance to the controller.
Flow of Events:

1. Controller issues order to the pilot.
2. Pilot maneuvers accordingly.
3. Controller issues next order to the next pilot

Post-condition:
Assumption:

Activity diagram for this use case is given as below:

Contact
Pilot

Hang Up

Issue Order

Does another pilot require an order?

Yes

No

Contact
Pilot

Hang Up

Issue Order

Does another pilot require an order?

Yes

No

Generation of Requirements

High Level Requirements:
1. Pilot requirements

I. The pilot shall be familiar with airport regulations and procedures.
II. The pilot shall comply with all orders issued by the controller.

III. The pilot shall issue a request to the Controller to indicate desire to maneuver the
aircraft to the next location.

2. Controller Requirements

I. The controller shall be familiar with airport regulations and procedures.
II. The controller shall be certified to operate the Decision Management Tool.

III. The controller shall issue orders based on the actions output by the Decision
Management Tool to each respective pilot.

IV. The controller shall input each pilot request into the Decision Management Tool.

3. Decision Management Tool (Program) Requirements
I. The program shall accept input from Controller.

II. The program shall issue output.
III. The program shall process data in accordance with all airport regulations.
IV. All input shall be processed in near real-time.
V. All actions shall be output in near real-time.

4. Communications

I. A reliable air-to-ground radio communications link shall exist.
II. All aircraft within the tower jurisdiction and the immediately surrounding airspace

shall have access to the tower frequency.
III. The tower may only be in contact with one aircraft at a given time.
IV. Incoming calls from pilots shall be received by the controller on a first-come-first-

serve basis.

Requirements Traceability
Flow down of Requirements from Use Cases

SOURCE DESTINATION

Use Case Req. # Description

2.II The controller shall be certified to operate the Decision
Management Tool.

2.IV The controller shall input each pilot request into the
Decision Management Tool.

3.I The program shall accept input from Controller.

1
Input Data

3.IV All input shall be processed in near real-time.

1.I The pilot shall be familiar with airport regulations and
procedures.

1.III The pilot shall issue a request to the Controller to indicate
desire to maneuver the aircraft to the next location.

4.I A reliable air-to-ground radio communications link shall
exist.

4.II All aircraft within the tower jurisdiction and the
immediately surrounding airspace shall have access to the
tower frequency.

4.III The tower may only be in contact with one aircraft at a
given time.

2

Issue request

4.IV Incoming calls from pilots shall be received by the
controller on a first-come-first-serve basis.

3 3.I The program shall accept input from Controller.

3.II The program shall issue output.

3.III The program shall process data in accordance with all
airport regulations.

3.IV All input shall be processed in near real-time.

3.V All actions shall be output in near real-time.

2.I The controller shall be familiar with airport regulations and
procedures.

2.II The controller shall be certified to operate the Decision
Management Tool.

2.III The controller shall issue orders based on the actions output
by the Decision Management Tool to each respective pilot.

4.I A reliable air-to-ground radio communications link shall
exist.

4.II All aircraft within the tower jurisdiction and the
immediately surrounding airspace shall have access to the
tower frequency.

4.III The tower may only be in contact with one aircraft at a
given time.

4
Issue Order

1.II The pilot shall comply with all orders issued by the
controller.

Traceability of Requirements to Use Cases / Scenarios

SOURCE DESTINATION

Req. # Description Use Case

1.I The pilot shall be familiar with airport
regulations and procedures. 2

1.II The pilot shall comply with all orders issued by
the controller. 4

1.III
The pilot shall issue a request to the Controller
to indicate desire to maneuver the aircraft to the
next location.

2

2.I The controller shall be familiar with airport
regulations and procedures. 4

2. II The controller shall be certified to operate the
Decision Management Tool. 1, 4

2.III
The controller shall issue orders based on the
actions output by the Decision Management
Tool to each respective pilot.

4

2.IV The controller shall input each pilot request into
the Decision Management Tool. 1

3.I The program shall accept input from Controller. 1, 3

3.II The program shall issue output. 3

3.III The program shall process data in accordance
with all airport regulations. 3

3.IV All input shall be processed in near real-time. 1, 3

3.V All actions shall be output in near real-time. 3

4.I A reliable air-to-ground radio communications
link shall exist. 2, 4

4.II
All aircraft within the tower jurisdiction and the
immediately surrounding airspace shall have
access to the tower frequency.

2, 4

4.III The tower may only be in contact with one
aircraft at a given time. 2, 4

4.IV
Incoming calls from pilots shall be received by
the controller on a first-come-first-serve basis. 4

System Structure and System Behavior

High Level Structure
The diagram below illustrates the classes and functions within the system. All system functions
may be traced to the system behavior. The scope of this project is generating the structure of the
software code based on behavioral modeling and analysis.

Airport

Location
Capacity
Assigned Radio Frequency

()

Controller

Name
Shift Assignment
Number Aircraft in Control

InputData()
ContactPilot()
IssueOrder()

Decision Making Tool

SoftwareCode
Operator
Performance

ProcessData()
OutputOrder()

Pilot

Name
Position
Assigned Radio Frequency

ContactController()
IssueRequest()
OperateAircraft()

Aircraft

Model
Performance
Operator

RespondToPilotControl()

Airport

Location
Capacity
Assigned Radio Frequency

()

Controller

Name
Shift Assignment
Number Aircraft in Control

InputData()
ContactPilot()
IssueOrder()

Decision Making Tool

SoftwareCode
Operator
Performance

ProcessData()
OutputOrder()

Pilot

Name
Position
Assigned Radio Frequency

ContactController()
IssueRequest()
OperateAircraft()

Aircraft

Model
Performance
Operator

RespondToPilotControl()

System Models
This Airspace Management Decision Tool may be modeled as a system with four possible initial
states. These states, as described in the scenarios, are:

• No planes under aircraft control
• No planes in the holding pattern; one plane at the gate
• One plane in the holding pattern; no planes at the gate
• One plane in the holding pattern; one plane at the gate

Given any one of these states, the controller may receive any one of three requests, which are
entered as input"

• Request to enter holding pattern
• Request to land and taxi to the gate
• Request to taxi to the runway and take off

Once the input is entered into the program, the output is displayed. The output is dependent on the
combination of initial state and input. Then, the state is updated to reflect the new current state.

To determine which output will correspond to which initial state and input, the system can be
modeled as a finite state machine. This modeling process is made simpler if we can first identify
and then eliminate any redundancies in output. The following validation tables display the output
according to some given initial state and input, as well as the updated state

States (location of aircraft) Input (Request from pilot)
S1 [0,0] X1
S2 [0,1] X2
S3 [1,0]
S4 [1,1]

Hold
Land

X3 Take Off

Output (Action for Controller)
Y1 Order Hold
Y2 Order Land; Order Hold
Y3 Invalid Request
Y4 Order Land
Y5 Order Take Off
Y6 Order Take Off; Order Land

Y7
Order Take Off; Order Land;
Order Hold

S1 S2 S3 S4
X1 Y1 Y1 Y2 Y7
X2 Y3 Y3 Y4 Y6
X3 Y3 Y5 Y3 Y5

Initial State

In
pu

t

Output/Controller Action

S1 S2 S3 S4
X1 S3 S4 S4 S4
X2 # # S2 S2
X3 # S1 # S3

Initial State

In
pu

t

New State

According to the table, there are 12 possible outputs given the combinations of 4 possible states
with 3 possible input. However, there are only seven different outputs. The table also illustrates
which new state is achieved according to the initial state and the input. In the case where a '#' is
displayed, the program should recognize the request as 'Invalid.' For example, if there are no
aircraft currently under the tower control, the controller will never receive a request to take off.
Therefore these validation tables display an initial mapping of system behavior, which will be
reflected in the program's software code when it is generated.

The validation tables may be modeled as finite state machines, as seen below.

S1 S3S2 S4S1 S3S2 S4S1 S3S2 S4

S1 S2 S3 S4

Y1 Y2 Y3 Y4 Y5 Y6 Y7

S1 S2 S3 S4

Y1 Y2 Y3 Y4 Y5 Y6 Y7
X1

X2

X3

X1

X2

X3

These finite state models eliminate redundancies in output and display how each output and new
state is determined. Each output can be traced back to an initial state via the input. Each updated
state can be obtained via some initial state and some input.

With a better understanding of the system behavior based on the finite state machine modeling,
state chart diagrams can be made, and will serve as the behavioral-structural foundation of the
software code. The state chart diagrams below illustrate the output and updated state based on the
input and the initial state.

Structural Design of Program Code

The Airspace Management Decision Tool has been modeled as a finite state machine, and its
outputs and revised states have been traced and verified according to a specific input and initial
state. These behavioral analyses can now be used to structure the actual software code.

This program is written on MATLAB version 7.0. In order to simulate an air traffic control
environment, the program generates initial states randomly. The locations of aircraft are displayed
both in the binary format described in the validation tables, and also in words. Then the user enters
in some input:
 E if the pilot request is to enter the holding pattern
 L if the pilot request is to land and taxi to the gate
 T if the pilot request is to taxi to the runway and take off.
Then, in accordance with the models above, the program outputs the user action and displays the
new state. The user is again prompted to enter input as the request. This process is done for some
specified number of iterations.

The code is printed below, followed by actual output on a situation with five iterations.

%Program Code: Airspace Management Decision Tool

n=input ('Enter number of iterations');
k=1;

%Display current state
hold=randint;
gate=randint;
current_state=[hold, gate]

while k<=n

 if hold==1
 disp('Aircraft in Holding Position')
 end

 if gate==1
 disp('Aircraft at Gate')
 end

 if current_state==[0,0]
 disp('No Aircraft Under Tower Control')
 end

%Enter Next Request: E for enter holding pattern, L for land and
taxi to
%gate, T for taxi to runway and take off

Request=input('Enter Pilot Request','s')

 if Request==('E')
 if hold==1
 if gate==1
 disp ('Order aircraft at gate to taxi to runway and
takeoff')
 disp ('Order aircraft in hold to land and taxi to
gate')
 disp('Approve request to enter holding pattern')
 hold=1;
 gate=1;
 current_state=[hold, gate]
 else disp ('Order aircraft in hold to land and taxi
to gate')
 disp('Approve request to enter holding pattern')
 hold=1;
 gate=1;
 current_state=[hold, gate]
 end
 else disp('Approve request to enter holding pattern')
 hold=1;
 current_state=[hold, gate]
 end
 k=k+1;

 end

 if Request==('L')
 if hold==0
 disp('Invalid Request')
 else
 if gate==1
 disp('Order aircraft at gate to taxi and takeoff')
 disp('Approve request to land')
 hold=0;
 gate=1;
 current_state=[hold, gate]
 end
 if gate==0
 disp('Approve request to land')
 hold=0;
 gate=1;
 current_state=[hold, gate]
 end
 end
 k=k+1;
 end

 if Request==('T')
 if gate==0
 disp('Invalid Request')

 else
 if hold==0
 disp('Approve Request to takeoff')
 hold=0;
 gate=0;
 current_state=[hold, gate]
 end
 if hold==1
 disp('Approve Request to takeoff')
 hold=1;
 gate=0;
 current_state=[hold, gate]
 end
 end
 k=k+1;
 end
end

MATLAB Output

Enter number of iterations5

current_state =

 1 0

Aircraft in Holding Position
Enter Pilot RequestT

Request =

T

Invalid Request
Aircraft in Holding Position
Enter Pilot RequestE

Request =

E

Order aircraft in hold to land and taxi to gate
Approve request to enter holding pattern

current_state =

 1 1

Aircraft in Holding Position
Aircraft at Gate
Enter Pilot RequestL

Request =

L

Order aircraft at gate to taxi and takeoff
Approve request to land

current_state =

 0 1

Aircraft at Gate
Enter Pilot RequestT

Request =

T

Approve Request to takeoff

current_state =

 0 0

No Aircraft Under Tower Control
Enter Pilot RequestE

Request =

E

Approve request to enter holding pattern

current_state =

 1 0

Conclusions and Future Work

This project shows the how behavioral modeling can be transformed into a functional software
design. The various models (validation tables, finite state machines, and state chart diagrams) can
be used to validate one another and can be used to structure the code. The code itself is also a
model of the system, which is evident in its “IF” statements.

Further analysis of this system will continue to focus on its behavior at a more detailed level.
Animation and more precise validation methods will be used. Additionally, some of the
assumptions initially stated in this project will change; for example, the program may be modified
to factor in the element of time, so that the controller and pilot actions are no longer assumed to be
instantaneous. This will require the use of an extended set of software validation and design tools,
including LTSA and UPPAAL.

