
System Modeling and
Traceability Applications
of the Higraph Formalism
Kevin Fogarty1 and Mark Austin2, 3, *

1Science Applications International Corporation (SAIC), Columbia, MD 21046

2Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742

3Institute for Systems Research, University of Maryland, College Park, MD 20742

SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM

Received 27 September 2007; Revised 30 April 2008; Accepted 10 January 2008, after one or more revisions
Published online in Wiley InterScience (www.interscience.wiley.com)
DOI 10.1002/sys.20113

ABSTRACT

This paper examines the use of higraphs as a means of representing dependencies and
relationships among multiple aspects of system development models (e.g., requirements,
hardware, software, testing concerns). We show how some well-known diagram types in UML
have counterpart higraph representations, how these models incorporate hierarchy and
orthogonality, and how each model can be connected to the others in a useful (and formal)
manner. Present-day visual modeling languages such as UML and SysML do not readily
support: (1) the traceability mechanisms required for the tracking of requirements changes
and (2) built-in support for systems validation. Higraphs also deviate from UML and SysML
in their ability to model requirements, rules, and domain knowledge relevant to the devel-
opment of models for system behavior and system structure. To accommodate these de-
mands, an extension to the basic mathematical definition of higraphs is proposed.
Capabilities of the extended higraph model are examined through the model development
for an office network computing system. © 2008 Wiley Periodicals, Inc. Syst Eng

Key words zaq;1

1. PROBLEM STATEMENT

Systems modeling is a fundamental component of the
Systems Engineering process. Good modeling tech-
niques allow for the comprehensive representation, or-
ganization, design, and evaluation of a system, from

Regular Paper

*Author to whom all correspondence should be addressed (e-mail:
austin@isr.umd.edu; kevin.p.fogarty@saic.com).

Systems Engineering
© 2008 Wiley Periodicals, Inc.

1

requirements, to structure, behavior, and beyond. Engi-
neers are motivated to learn and use system modeling
techniques in the belief that they enable and improve
communication and coordination among stakeholders,
thereby maximizing the likelihood of the right system
being built correctly on the first try. Indeed, with a
complete and correct system model in hand, ideally,
implementation should be as simple as building the
system per the model blueprint, which, in turn, is often
represented through the use of system modeling lan-
guages. However, this approach assumes and requires
two things: (1) that a system model exists that captures
all facets of a system design (otherwise there will be
holes in the “blueprint” where assumptions could be
made) and (2) that the system model can be updated as
requirements change, additional constraints are imple-
mented, etc. In these two assumptions, we can find a
point where the grand vision of system modeling and
the reality of numerous present-day commercial engi-
neering projects diverge. The problem is not that there
are large flaws in current system modeling languages
per se, but that existing system modeling languages
(and associated model-driven methods) are relatively
complex, and are difficult to use beyond the system
modeling phase of the systems engineering lifecycle. In
commercial settings, modeling languages in the form
of popular commercial tools (see, for example,
DOORS, Teamcenter (formally SLATE) and Visio [Mi-
crosoft, 2003; Teamcenter, 2008; Telelogic 2006]) are
often forced into use by management on engineering
projects. Too often personnel without true systems en-
gineering skills are relied upon to use these tools,
blindly, to create system models. If the underlying tools
are implemented as islands of automation (or semiauto-
mation) and are not connected together in a way that
allows for flows of data/information among tools, then
there is no automated way to create a trace from a
requirement, to a component, to a behavior, to a test
case. Support for change management is also weak due
to the lack of a complete unified system model [Bell,
2004].

1.1. Scope and Objectives

The hypothesis of our work is that these modeling
limitations can be mitigated through the use of hi-
graphs, a topovisual formalism introduced by David
Harel [Harel, 1987, 1988]. To date, the higraph formal-
ism has been applied to a wide range of applications
including statecharts in UML (Unified Modeling Lan-
guage) [UML, 2003], expression of relationships in
drawings [SysML, 2005] and urban forms [Dupagne
and Teller, 1998], formal specifications in software
development [Paige, 1995; Ramaswamy and Sarkar,

1997], component-based development of web applica-
tions [Wissen and Ziegler, 2003], and verification pro-
cedures in rule-based expert systems [Ramaswamy and
Sarkar, 1997]. Higraphs have also made their way into
Headway Software’s reView, a tool for management of
large software code-bases (the source code, libraries,
packages, etc.) [Headway, 2001]. The common thread
among these higraph-based applications is the use of
nodes to represent allowable system states and edges to
represent transitions between states (system functions)
and/or dependencies between states or viewpoints. Hi-
erarchies can be shown through enclosure; concurrent
activities can be shown through orthogonality relation-
ships. Because system models require and exhibit many
of these same characteristics (states, transitions, hierar-
chies, concurrency), we surmise that higraphs might be
a suitable abstraction for representing dependencies
and relationships among multiple aspects of systems
development models (e.g., hardware, software, electri-
cal, mechanical concerns). Indeed, it is our contention
that higraph representations can complement, and per-
haps even coexist, with present-day UML and SysML
representations of systems.

This paper begins with a detailed introduction to the
mathematical formalities of higraphs and directed acy-
clic graphs. Section 3 focuses on existing visual mod-
eling languages, and examines the goals, strengths, and
weaknesses of the Unified Modeling Language (UML)
[UML Forum, 2003] and the Systems Modeling Lan-
guage (SysML) [SysML, 2005a, 2005b]. Section 4
covers the use of higraphs as a modeling tool for system
requirements, system structure, and system behavior.
We show: (1) how some well-known diagram types in
UML have counterpart higraph representations, (2)
how these models incorporate hierarchy and ortho-
gonality, and (3) how each model can be connected to
the others in a useful (and formal) manner. To accom-
modate these demands, the basic mathematical defini-
tion of higraphs is extended in Section 5. Finally, in
Section 6 capabilities of the extended higraph model are
examined through model development for an office
network computing system.

2. INTRODUCTION TO HIGRAPHS

2.1. Definition of Higraphs

A higraph is a mathematical graph extended to include
notions of depth and orthogonality. In other words
[Grossman and Harel, 1997],

Higraph = Graph + Depth + Orthogonality. (1)

2 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

We denote the term “graph” by G(V, E), where V is a
set of vertices and E is a set of edges. The edges have
no points in common except those contained in V. A
directed graph is one in which the edges have direc-
tion—directed edges are called arcs (e.g., transitions in
statechart diagrams). An edge sequence between verti-
ces v1 and v2 is a finite set of adjacent and not necessarily
distinct edges that are traversed in going from vertex v1

to vertex v2 [Chachra, Ghare, and Moore, 1979; Wiki,
2006]. The left-most schematic in Figure 1 shows, for
example, a small mathematical graph that is generic in
the sense that the nodes and edges have arbitrary mean-
ing. All that is defined here is that four nodes and three
edges make up this graph. The central node has some
sort of relationship to the three other nodes through the
edges. The term “depth” in Eq. (1) can be thought of as
a defined hierarchy, and the term orthogonality can be
thought of as a Cartesian product or partitioning. Or-
thogonal states provide a natural mechanism for mod-
eling of systems that contain disjoint but concurrent
subsystem developments and/or concurrent component
behaviors. Higraphs also incorporate Euler Circles (or
Venn Diagrams) to define the “enclosure, intersection,

and exclusion” elements. Harel [1988] refers to these
low-level atomic elements as blobs. The center sche-
matic of Figure 1 shows, for example, a Venn diagram
with relationships among three sets A, B, and C. Each
set is define by its enclosures. Where set A and set B
intersect, we see “A & B,” and this implies the exclusion
of set C from this space. In the rightmost schematic of
Figure 1, a graph structure is defined through connec-
tivity relationships among the four blobs. Each blob has
some sort of relationship (connectivity) to the central
blob, Blob A.

2.2. Visualization of Relationships

A hierarchical relationship is defined by placing one
blob inside another—see, for example, the left-hand
schematic in Figure 2. Higraph edges represent rela-
tionships among system entities (e.g., physical connec-
tions, logical connections, and so forth). An edge can
connect any node to any other node, even across hier-
archies. The center schematic in Figure 2 shows, for
example, an edge between blobs A and B, an edge from
blob B to the node surrounding blobs C and D, and a
single edge from the lower node (containing blobs C

Figure 2. Visualization of hierarchy, orthogonality, and linking relationships in higraphs.

Figure 1. Fundamental elements in the definition of higraphs (left figure—basic graph structure; center figure—venn diagram;
right figure—graph with blobs).

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 3

Systems Engineering DOI 10.1002/sys

and D) to the upper node (containing blobs A and B).
When the head of an edge (i.e., the arrowhead) termi-
nates at anode, communication to all nodes and blobs
within that node is implied. As we will soon see below,
this notational mechanism allows for considerable sim-
plification of complex systems.

Orthogonality concerns will be shown as a dashed
line within a higraph. The right-most schematic of
Figure 2 shows, for example, a team-based design
where requirements are organized according to domain
of expertise. Within Component1, two orthogonal re-
gions (i.e., Power Specifications and Physical Specifi-
cations) are defined. Current draw, input voltage, width,
and weight are all “lower level” specifications of the
“higher level” Component1.

2.3. Mathematical Definition

The basic mathematical definition of a higraph can be
summarized as follows [Grossman and Harel, 1997]:

• B is the set of blobs [nodes], b, that make up a
higraph.

• E is the set of edges, e, that make up a higraph.
• ρ is the hierarchy function.
• Π is the orthogonality (or partitioning function).

The quadruple (B, E, ρ, Π) defines a higraph H. Harel
[1987, 1988] provides the lowest level definitions of the

hierarchy and partitioning functions. Applying these
definitions to the higraph shown in Figure 3 yields the
following equations:

1. B = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o}
2. E = {(i, h), (b, j), (l, c)}
 a. e(l, c) = {(l, f), (l, e)}
3. ρ(a) = {{b B)} ∧ {b is defined from�a} ∧ {b is

one level below a}}
 a. ρ(a) = {b, c, h, j}
 b. ρ(b) = {d, e}
 c. ρ(c) = {e, f}
 d. ρ(g) = {h, i}
 e. ρ(j) = {k, l, m, n, o}
 f. ρ(d) = ρ(e) = ρ(f) = ρ(h) = ρ(k) = ρ(l) =

 ρ(m) = ρ(n) = ρ(o) = 0.
4. Π(H) = ∪ ∑m=1

n πm (b ∈ B)
 a. π1(a) = {b, c, h}
 b. π2(a) = {j}
 c. π1(j) = {k, l, n}
 d. π2(j) = {n, o}
 e. π1(b) = π1(c) = π1(d) = π1(e) = π1(f) = π1(g)

 = π1(h) = π1(i) = π1(k) = π1(l) = π1(m) =
 π1(n) = π1(o) = 0,

where n is the number of orthogonal regions within an
element selected from the set b. Higraphs are topovisual
formalisms, meaning that nonmetric topological con-
nectedness is important, as opposed to the size and

Figure 3. Example higraph for math modeling.

4 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

physical distance between nodes in a higraph [Mun-
zner, 2000].

XOR Decomposition. Harel [1987, 1988] defines
the concept of XOR decomposition as it relates to
DAGs as: If a and b are nonintersecting and are con-
tained in c, and c contains no other blobs, then c is the
XOR of a and b—that is, to be “in” node c (to be in a
state, have an attribute, etc.) means that you are “in”
node a or node b (not both). And dually, if a and b
intersect and their intersection contains blob c and none
other, then c is also the XOR of a and b—that is, you
are “in node c and a” or you are “in node c and b,” but
not all three. The appeal of XOR decomposition mecha-
nisms to systems engineering is that they allow for
top-down and bottom-up representation of systems or-
ganization.

Directed Acyclic Graphs and Higraphs. As de-
fined by the National Institutes of Standards and Tech-
nology [Black, 2006zaq;2], a directed acyclic graph
(DAG) is a directed graph with no path that starts and
ends at the same vertex. Figure 4 shows a basic transla-
tion from DAG, to “Directed Higraph,” to a higraph.
Conversely, a DAG could be systematically derived
from the higraph quadruple via appropriate algorithms
(see Fig. 5). With a data structure such as a linked-list
(with qualitative and quantitative attributes assigned to
each node), the algorithms to trace through the system
model already exist. As discussed later, these traces

through the system (the whole, unified system) are what
provide real power to the higraph model.

A configuration is defined as the set of nodes corre-
sponding to the vertices constituting a legal trace of the
[DAG] higraph [Grossman and Harel, 1997]. The legal
trace will be the result of some rule or command that
causes the trace. In Figure 3 there are two valid traces
that will return nodes n and o: (A → J → N) and (A
→ J → O). The command that executes this trace would
be to find all components in the second orthogonal
region of j. As we will soon see in much greater detail,
by qualitatively or quantitatively defining n, o, j, and
the meaning of the orthogonality in j, this trace will
present the user with a unique view of the system.

2.4. Systems Engineering Application of
Higraphs

For systems engineering applications the close relation-
ship between higraphs and DAGs is important because,
with the latter in place, appropriate rules (or search
criteria) can be applied to traversals of the higraph
structure to retrieve content. As illustrated in Figure 5,
XOR decomposition allows for top-down and bottom-
up representation of systems organization. With respect
to visualization concerns, the hierarchical nature of
higraphs allows for higher or lower levels of detail to
be shown as needed. Moreover, by virtue of the many
types of edges allowed in the higraph formalism (e.g.,
requirement assignment, allocation of behavior, com-
plies with, satisfies, etc.), systematic tracing of the
higraph edges will reveal much information about the
validity of the system design. For instance, edge inspec-
tion will ensure the following:

1. All requirements (requirement nodes) can be
traced to a system structure node (system com-
ponent) or system behavior node (system behav-
ior/function). If gaps exist, some requirements
may not be met by the current system design.

2. All system behavior nodes (system behav-
iors/functions) can be traced to a system structure
node (system component). This ensures correct

Figure 5. Systematic generation of DAG’s from blob hier-
archies.

Figure 4. Step-by-step development of a higraph from a directed graph.

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 5

Systems Engineering DOI 10.1002/sys

functional allocation; all behaviors are allocated
to a specific component function.

3. No system structure or behavior nodes exist that
cannot be traced to a requirement, thereby elimi-
nating “gold plating,” or the inclusion of compo-
nents or capabilities not required by the
specification.

4. The system structure is an instance of the domain
structure (for normal, noninnovative, systems).
This ensures that what you will build is in line
with existing principles (e.g., physical laws).
Likewise, ensure system behaviors comply with
domain behaviors.

3. RELATED SYSTEM MODELING
LANGUAGES

3.1. Capabilities and Strengths of UML
and SysML

The goals of the Unified Modeling Language (UML)
and the System Modeling Language (SysML) are to
provide users with a ready-to-use, expressive visual
modeling language (notation) so they can describe and
exchange meaningful models [Rational, 1997]. Most
engineers use UML informally—that is, diagrams are
sketched as abstractions of a system description. Semi-

informal uses of UML aim to create a one-to-one cor-
respondence between UML and the system being de-
scribed.

UML has evolved through two major revisions since
the mid-1990s. UML 2, formalized in 2005, is defined
by the list of diagrams shown in the upper half of Table
I. Use case diagrams express required system function-
ality. Class diagrams express relationships among com-
ponents in the system structure. Statechart and activity
diagrams show two viewpoints of system behaviors.
The remaining four diagrams summarize the mapping
of behavior fragments onto structure, and details of
their implementation. By adding communications, tim-
ing, and interaction overview diagrams, UML 2 makes
significant improvements to the ways in which flows of
information can be documented. The new Parts, Ports,
and Connectors allow for a decomposition of systems
into subsystems, components, parts, and so forth. This
hierarchical representation is crucial to the modeling
and evaluation of real-life systems [UML Forum,
2006].

SysML builds upon Versions 1 and 2 of UML,
aiming to provide a visual notation for the development
and evaluation of systems composed of both hardware
and software. Development on Systems Modeling Lan-
guage (SysML) began in 2003, and in 2005 the alpha
spec was published [SysML, 2005b]. SysML supports

 Table I. Types of Diagrams in UML2 and SysML: (1) Structure and Behavior Diagrams in UML2
 and (2) Structure, Behavior, and Cross-Cutting Diagrams in SysML

6 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

the specification, analysis, design, verification, and
validation of a broad range of systems and systems-of-
systems. These systems may include hardware, soft-
ware, information, processes, personnel, and facilities
[SysML, 2005b]. As shown in the lower half of Table I,
the SysML diagram types are organized into three sec-
tions; diagrams for modeling system structure, for mod-
eling system behavior, and those that cut across
viewpoints. The new parametric diagram follows the
graphical conventions of a UML internal structure dia-
gram showing a collaboration [SysML, 2005b]. Para-
metric constraints can be used in tradeoff studies to
show what happens to one (internal) characteristic of a
block, when characteristics in another block are
changed. Cross-cutting diagrams get their name from
the nature of the information contained in each—in
other words, these diagrams show how a particular
concern (requirement) cuts across the structural and
behavioral domains. Compared to UML, SysML offers
the following new features:

1. Block Stereotypes. The SysML Block Stereo
type is based on the UML concept of composite
structures. Blocks can have internal features (at-
tributes, operations) and can own ports. The ex-
tension of UML ports in SysML as flowports
provides a far more complete system model in
which blocks can be connected (physically
and/or logically) to other blocks.

2. Allocations. SysML extends the UML trace
comment with their new allocation property.
Functional allocation is the assignment of func-
tions (requirements, specifications, behaviors,
etc.) to system components. Support for func-
tional allocations is needed especially in the de-
velopment of larger systems where design and
implementation may not occur at the same place
or time. UML versions 1 and 2 make little refer-
ence to functional allocation (aside from swim-
lanes in an Activity diagram).

3. Requirements Modeling. SysML provides
modeling constructs to represent requirements
and relate them to other modeling [system] ele-
ments [SysML,2005a]. SysML introduces an ac-
tual requirements node which contains
information about requirements such as identi-
fier, text, source, and method of verification.
These requirements nodes can be used in Block
Definition Diagrams (SysML version of a UML
class diagram) to show a hierarchy of require-
ments. Requirements can also be mapped to other
elements by derivation, verification, and satisfac-
tion paths (e.g., a diagram can show how a spe-

cific requirement is assigned to a component in
the system structure.)

3.2. Weaknesses of UML and SysML

The following quote from Berkenkotter [Berkenkotter,
2003] captures perhaps the most significant weakness
of UML: “One of the most frequently discussed weak-
nesses of UML 1.4 is its usability as it consists of an
overwhelming number of diagrams and elements.
While diagrams may represent different views on a
system, there is no mechanism to define the intercon-
nections or dependencies among the diagrams describ-
ing a system.” In other words, there are too many places
to capture information (in the large number of available
diagrams), and too few ways to show relationships
between the diagrams. This has not changed with UML
2. From a systems engineering perspective, little effort
is given to requirements modeling, functional alloca-
tion and domain specific (customized) viewpoints. To
be fair, this is done in part, to keep the focus of UML
remaining on software and real-time software systems.

UML 2 provides little support for requirements defi-
nition and traceability. In an effort to mitigate this
deficiency, Letelier [2002] documents an entire require-
ments traceability meta-model. This meta-model works
within the specifications of UML to show not only
requirements traceability, but also traceability through-
out the rest of the system. This contribution is important
because it highlights the lack of support in UML for
functional allocation at a system level. Letelier also
extends UML to include an “assignedTo” stereotype,
which can be used in Requirements Allocation activities
(assigning a requirement to a component or behavior)
within a UML model.

While SysML makes significant improvements on
UML in terms of modeling traditional systems engi-
neering processes, there are a few areas of weakness in
the SysML alpha release:

1. Weak Support for Diagram Connectivity.
Something that is not addressed in the SysML
specification is the idea of interconnections be-
tween diagrams. SysML is much better than
UML at showing multiple ideas on a single dia-
gram (i.e., a component in a structure diagram
with its parent requirement tag and test case tag).
However, an alternative and potentially better
implementation would allow links from a re-
quirements diagram to a structure diagram—in-
stead of manually placing a <<requirements>>
comment in a structure diagram. By allowing
links between diagrams, as a higraph model al-
lows, you would minimize the total number of

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 7

Systems Engineering DOI 10.1002/sys

complete diagrams, but could keep any number
of relations.

2. Weak Support for Allocations. As discussed
earlier, there is a strong effort to model alloca-
tions in SysML. However, while the notion is
fundamentally correct (as documented in the
SysML specification), there seems to be no rules
on allocations. In other words, how do we know
if the <<allocate>> tag is correct? Although there
always must be reliance on the human creating
model, under this specification, an engineer
could conceivably allocate a behavior to a re-
quirement (instead of allocating the requirement
to a behavior), or allocate five behaviors to a
Block (structure) that does not have sufficient
attributes or functions to support those behaviors.

3. Weak Support for Hierarchy among Alloca-
tions. To complicate matters, while SysML
specifies hierarchical relationships among struc-
ture, behaviors (blackbox versus whitebox), and
requirements, there is no clear definition of hier-
archy among allocations. For instance, require-
ments can be allocated to subcomponents, but it
is not clear how those allocations are dealt with
if there is a change to a higher-level component.
This may have been overlooked because, in soft-
ware, inheritance and encapsulation mechanisms
can be relied upon to propagate changes from a
class to its lower-level subclasses. However, in
other engineering applications (i.e., physical in-
tegrations) there needs to be a way in the model
to ensure that when the dimensions of a physical
component changes (high level change), the di-
mensions of subcomponents stay within specifi-
cation (leads to low level change).

4. Weak Mathematical Foundation of
UML/SysML. UML and SysML are both de-
fined via their meta-models, that is, a meta-model
for what kinds of diagrams will be supported, and
the features within each type of diagram. The
meta-model is enough information for computer
vendors to: (1) implement software that will sup-
port the construction of diagrams to describe
engineering systems (e.g., Microsoft Visio, Ra-
tional Rose) and (2) develop languages for the
exchange of UML/SysML data/information
among tools (e.g., XMI and AP233) [Buller,
2003zaq;2; Oliver, 2002]. The principal problem
with meta-models, versus a mathematical foun-
dation, is that the former provides only weak
enforcement of relationships among system enti-
ties. As a result, software tools like Microsoft
Visio, allow a systems engineer to create UML

diagrams that don’t make any sense with respect
to real-world entities.

Higraph models have the benefit of being defined by a
mathematical formula, thereby ensuring that all rela-
tions between requirements, structure, and behavior
entities are formalized. These relationships must be
honored for the model to be valid. We also assert that
by forcing directional allocations (i.e., requirements to
components, behaviors to components) to the lowest
level possible, not only will clarity of decision making
in systems engineering be improved, but it will also
allow for early validation of system correctness. System
design rules could be created that only allow certain
types of edges (e.g., allocations) to connect a require-
ment to a behavior, or connect a behavior to a function
in a system structure component. The follow-up en-
forcement of rules for allocations (edge connectivity in
higraphs) provides a basis for traceability-enabled error
checking within a system model. For example, all edges
could be examined to ensure their end-points are com-
patible (e.g., a requirement to a component attribute, a
behavior to a component function) and complete (e.g.,
all requirements have edges to either a behavior or
function).

4. SYSTEMS ENGINEERING MODELING
WITH HIGRAPHS

Now that we have examined existing system modeling
languages, and proposed ways for improvement
through the use of higraphs, we will show how the
higraph formalism can be applied to the representation
and organization of system modeling entities (i.e., re-
quirements, structure, and behavior), and the traditional
diagrams that describe them. Sections 4.1–4.4 follow
the development process shown in Figure 6. System
behavior/functionality is defined by use cases. Frag-
ments of required behavior are defined using activity
and sequence diagrams. Most of the requirements cor-
respond to constraints on performance, interface, and
economic concerns that an implementation would need
to satisfy. Section 4.6, in particular, describes how
higraphs can link components from higraphs together
to produce flows of design information generated dur-
ing the system development.

4.1. Use Case Modeling

Use case diagrams show what actions external users
(e.g., users, operators, maintainers, etc.) can perform
using the system. By replacing the stick-figure icons
representing actors with the less aesthetically pleasing
Higraph nodes, traditional use case diagrams can be

8 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

converted to higraph use case diagrams. See, for exam-
ple, Figure 7.

4.2. Requirements Modeling

To model system requirements using higraphs, we will
define how the graph elements can be used. The nodes
in a requirements higraph will represent individual re-
quirements (whatever the domain). All the node has to
capture is the text of the requirement. The node (it may
be best to think of a node as the instance of a class in an
object oriented paradigm) could have as many text
fields as necessary (e.g., number, textual description,
priority, and owner/stakeholder). Multiple levels of re-
quirements may be represented by a hierarchy of nodes.

Various interpretations in the edges are possible—for
example, “parent” and “child” requirements, high-level
requirements and low level requirements, explicit re-
quirements and derived requirements.

Requirements are commonly organized into tree
(and graph) hierarchies, especially for team-based de-
sign [Austin, Mayank, and Shmunis, 2006]. But this is
not the only possibility. Another logical organization of
requirements is by domain. These domains may repre-
sent different types of requirements (e.g., physical
specifications, electrical specifications, mechanical
specifications), requirements from different stakehold-
ers, or may represent requirements from outside of the
technical realm (technical specifications, project cost
requirements, project schedule requirements, project

Figure 6. Pathway from operations concept to models of behavior/structure to requirements.

Figure 7. ATM use case diagram and counterpart higraph representation.

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 9

Systems Engineering DOI 10.1002/sys

staffing requirements). Sometimes domain organiza-
tion will overlap, for example, when requirements are
common to multiple domains and/or they represent the
interface between domains. Introducing orthogonality
to the requirements higraph allows for the logical and
visual separation of requirements from different do-
mains.

Orthogonality is a feature of higraphs that can be
used to define, separate, and logically group domain
requirements. Consider, an example, where power and
physical requirements are organized into a higraph, as
shown in the upper half of Figure 8. Required electrical
performance of the engineering system is covered with
three requirements. Requirements 1.0 and 2.0 are ex-
plicit requirements; requirement 1.1 is derived from
requirement 1.0. Notice how the hierarchy of require-
ments is implied without the use of edges. The corre-
sponding DAG for this organization of requirements is
shown in the lower half of Figure 8. When an ortho-

gonality is shown in a DAG, the DAG takes on an
“and/or” construct. The orthogonal relationship be-
tween Power Requirements and Physical Requirements
is represented as an “or”, but the other (hierarchical)
relationships are shown as “ands.” Harel creates this
theory in Grossman and Harel [1997].

4.3. System Functionality and Behavior

Activity diagrams and sequence diagrams are both ideal
mechanisms for visualizing fragments of system func-
tionality. Activity diagrams, with their activities (nodes)
and transitions (edges) can easily be modeled as a
higraph. Decision elements are supported by a specific
type of node. Parallel behaviors are supported by ortho-
gonally divided activities. Figure 9 shows a simple
example taken from the automobile domain. Likewise,
sequence diagrams which show a sequence of events
over time, can be modeled using higraphs. See, for

Figure 8. System requirements.

10 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

example, Figure 10. To do this, we have adapted a
concept described in Minas [1998]. Note that messages
(edges) originate from traditional structure object nodes
(driver, door, doorlock), but they must pass through a
“time” node (with an attribute counting time) before
arriving at another structure node.

Higraph Modeling of System Behavior. Detailed
models of system behavior emanate from synthesis and

organization (sequences, loops, hierarchies, concurren-
cies) of behavior fragments. By paying attention to the
grouping of these states (represented by nodes or
blobs), behavior models can remain in proportion to the
size of the system structure model. Edges are events,
internal or external, that cause the system to change
states. Figure 11 shows, for example, three concurrent
behaviors—transmission, heat, and lighting systems—

Figure 9. Activity diagram and equivalent higraph representation for turning a car.

Figure 10. Sequence diagram and equivalent higraph representation for entering a car.

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 11

Systems Engineering DOI 10.1002/sys

in a modern automobile. For the heat and lighting
systems, only the top level of behavior is shown. The
transmission system is presented with two levels of
detail. Each orthogonal region has a distinct initial state.
Changes in system state (e.g., the transmission moves
from drive to neutral) are triggered by external events.
Internal events correspond to behaviors defined within
the nodes in the system structure model. External events
should flow from use cases. Edges can also be labeled
with values that are the result of behaviors that occur
within a state (node). A single edge can represent a
transition that affects any number of states. Since nodes
(states) can be grouped so they share common edges
(transitions), when a component is added to the system,
it can be grouped so the total number of states does not
increase exponentially.

4.4. System Structure (and System-Level
Design)

By design, system structure modeling with higraphs is
very similar to system structure modeling with UML
and SysML. For both UML and SysML, the primary
artifact of the system structure is the class diagram.
UML class diagrams and SysML block diagrams show
a hierarchy of classes/blocks, each with attributes and
behaviors, and rules for assembly. The latter can involve
composition, aggregation, multiplicity, and generaliza-
tions (among others). The classes/blocks, and their hi-
erarchical arrangement, define the structure of a system.

In a higraph model of system structure, the nodes
represent classes, attributes, and functions, and edges

show association (or other general relationships) be-
tween classes. Attributes and behaviors are defined
within class nodes. The hierarchical arrangement of
nodes in a system structure diagram represents a class
hierarchy and shows aggregation and composition rela-
tionships. Aggregation can be thought of as a weak
“has-a” relationship between classes. The relationship
is weak in the sense that when the parent class is deleted,
the subclass(es) will still exist. Composition, on the
other hand, is a strong “has-a” relationship where if the
parent class is deleted, the subclass(es) will not exist.
See UML Glossary [2006] for a complete UML Glos-
sary. Orthogonal regions can separate classes that ag-
gregate or compose a parent class. And, finally, in a
higraph model of system structure, edges show gener-
alization, representing an “is-a” relationship between
classes. Inheritance of attributes and functions would
follow these edges. The capability to formally model
inheritance is significant due to the weak support for
this in SysML and the notion that a system model, that
itself could be modeled in an object-oriented fashion (to
simplify a software implementation) would be desir-
able.

Example: UML Based Structure Model of an
ATM. A key advantage of higraphs is the ease with
which varying amounts of detail can be shown. Figure
12 shows three views of a system-level design for an
ATM machine. The top-left schematic shows a top-level
higraph representation for an ATM system structure
composed of hardware and software classes. A detailed
view of the attributes and functions for the hardware
and software is shown on the top right-hand side. Ad-

Figure 11. Higraph system behavior diagram automobile.

12 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

ditional details of the ATM software implementation
(i.e., Customer Verification Software) are shown in the
lower-most schematic. Nodes at the bottom of the dia-
gram (at the end of the open, unidirectional arrow) are
generalizations of the ATM Hardware parent class. As
such, these child classes inherit all attributes and func-
tions that exist in the parent class, yet may have their
own unique attributes and functions.

For the purposes of comparison, counterpart UML
diagrams are shown in Figures 13–15. Nodes at the
ends of the open, unidirectional arrows are generaliza-
tions of the ATM Hardware parent class and ATM
Software parent class. As such, these child classes in-
herit all attributes and functions that exist in the parent
class, yet may have their own unique attributes and
functions.

Figure 12. High-level, detailed, and software inheritance views of system structure and hardware/software system breakdown
for an ATM Machine (adapted from Austin [2002]).

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 13

Systems Engineering DOI 10.1002/sys

Because the UML class diagram (and equivalent
Higraph diagram) shows component attributes and
functions, it can be thought of as a system design
model—not just a system structure model. Individual
attributes and functions are defined within individual
nodes and are arranged hierarchically within the class
to which they belong. Even within the attributes region
of the ATM Hardware class, two orthogonal regions are
shown. This represents physical and logical attributes,
both of which compose the attributes for the ATM
hardware class.

4.5. Modeling Domain Requirements,
Structure and Behavior

While the modeling of domain rules is established and
mature, to do so with a higraph representation is new

and novel. Higraphs deviate from UML and SysML in
their ability to model requirements, rules, and domain
knowledge (e.g., relevant principles of science such as
electromagnetic fields equations for a communications
system) relevant to the development of models for
system behavior and system structure.

4.6. System-Level Modeling and
Connectivity

Because higraph models allow for arbitrary connec-
tions among elements, their primary strength lies in
explicit support for traceability (via edges) between
models of system requirements, system structure, and
system behavior. Indeed, although each of aspects may
be defined in their own higraph model, the formalism
allows for their linking into one large higraph, thus
creating a true system model.

Consider, for example, the high-level connectivity
of requirements, structure, and behavior higraph mod-
els shown in Figure 16. The system requirements hi-
graph model is partitioned into three orthogonal
regions: one for physical requirements, a second for
functional requirements, and a third for interface re-
quirements. Since we have chosen to separate physical
and functional requirements into different orthogonal
regions (a logical separation in this case), we require an
“interface” through which these requirements could
connect to each other. By design, the interface require-
ments node spans between the physical requirements
and functional requirements, and any edges would have

Figure 13. High-level UML class diagram for ATM machine.

Figure 14. UML system structure diagram aggregation.

14 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

Figure 16. Higraph-based requirements, system model, and framework for domain rule checking.

Figure 15. UML system structure diagrams for hardware and software components.

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 15

Systems Engineering DOI 10.1002/sys

to pass through a node in the interface requirements area
to go from physical to functional (or vice versa). Edges
connecting the three higraphs show what pieces of the
system structure satisfy specific physical requirements,
and what system behaviors satisfy specific functional
requirements. Finally, the lower half of Figure 16 shows
how models of system structure are linked to domain
rules (physical realities), and how domain behaviors
comply with domain rules (functional realities).

5. EXTENDED MATHEMATICAL AND
LOGICAL MODELING

When Eq. (1) is applied to the higraph representation
of an actual system, the result is a DAG for the system
representation. From a systems engineering perspec-
tive, however, the formulation is missing specific de-
tails for how fragments of behavior and attributes of
system structure map onto the DAG. Therefore, in this
section, we extend Eq. (1) to include assignment of
types to nodes and edges in higraphs, and definitions to
hierarchies and orthogonalities. Table II contains a sum-
mary of the extended higraph element definitions.

Nomenclature. Let B and E be the sets of nodes and
edges that make up a higraph. We will define B to be
made up of B1 (set of all system requirement nodes), B2

(set of all system component nodes), and B3 (set of all
system behavior nodes). Lower level details are repre-
sented through extension of the subscript notation. For
instance, B2 may be defined as being made up of B2-1

and B2-2 (set of all system component attribute nodes,
and set of all system component function nodes, respec-
tively). So, B = (B1, B2, B3), where B2 = (B2-1, B2-2).

Higraph edges may represent (but are not limited to)
the following: (1) assignment of requirements, (2) as-
signment of a requirement to a component, (3) assign-
ment of a requirement to a behavior, (4) assignment of
a behavior to a component (functional allocation), (5)
inheritance between system components, and (6) a tran-
sition from one system state to another, corresponding
to a behavior. We will define E to be made up of E1 (set
of all requirement assignments), E2 (set of all functional
allocations), and E3 (set of all behavior transitions).
Further, E1 may be defined as being made up of E1-1 and
E1-2 (set of all requirements assigned to system compo-
nents, and set of all requirements assigned to system
behaviors, respectively). So, E = (E1, E2, E3), where E1

= (E1-1, E1-2).
Hierarchy in higraphs might represent (but is not

limited to) the following: (1) derived requirements, (2)
system component specification, (3) allocation of an
attributes to a component, (4) allocation of a function
to a component, (5) high level or low level system
behaviors. If ρ is the set of hierarchies that make up a
higraph, we will define ρ to be made up of ρ1 (set of all
derived requirements), ρ2 (set of all component speci-
fications), and ρ3 (varying levels of system behaviors).
Further, ρ2 may be defined as being made up of ρ2-1 and
ρ2-2 (set of all requirements assigned to system compo-
nents, and set of all requirements assigned to system
behaviors, respectively). So, ρ = (ρ1, ρ2, ρ3), where ρ2

= (ρ2-1, ρ2-2).
Orthogonality in higraphs may represent (but are not

limited to) the following: (1) logical partitioning of
requirements (e.g., physical requirements, functional
requirements), (2) structural relationships (e.g., compo-
sition and aggregation), and (3) concurrent system be-

 Table II. Summary of Higraph Element Definitions

16 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

haviors. If Π is the set of orthogonalities that make up
a higraph, we will define Π to be made up of Π1 (set of
requirement partitions), Π2 (set of all structural rela-
tionships), and Π3 (set of all concurrent system behav-
iors). Further, Π1 may be defined as being made up of
Π1-1 and Π1-2 (set of all physical requirements, and set
of all functional requirements, respectively), and Π2

may be defined as being made up of Π2-1 and Π2-2 (set
of all composition relationships, and set of all aggrega-
tion relationships, respectively). So, Π = (Π1, Π2, Π3),
where Π1 = (Π1-1, Π1-2) and Π2 = (Π2-1, Π2-2).

6. HIGRAPH MODELING OF AN OFFICE
COMPUTING NETWORK

In this section capabilities of the extended higraph
model are examined through model development of an
office network computing system. To simplify the
model development we assume that the network is
already in place—it follows that system requirements
and components will also be in place. The principal
goals of the example are to demonstrate that the office
computing network system can be represented in hi-
graph form, which, in turn, can be used to respond to
queries and changes to system requirements. The sec-
ond important purpose is to demonstrate partial formu-
lation of the math model from which pseudoqueries of
the system higraph model can be performed. For details
on higraph representations for individual requirements,
and structure and behavior models, the interested reader
is referred to Fogarty and Austin [2007].

6.1. Structural Requirements Traceability

We begin by showing examples of connectivity, via
edges, for allocation of requirements to component

attributes and system behaviors, allocation of system
behaviors to component functions, and traces from
domain requirements to system requirements. Figure
17 shows the association between the system’s behavior
requirements and the system use case higraph. Figure
18 shows the allocation of the system cost requirement
to attributes in system structure components—system
hardware components and system software compo-
nents in this case. It would be generated on the fly in
response to the query “Show all system attributes that
satisfy the system cost requirements.” What we see,
then, is that every hardware and software component
has an attribute that must contribute to the satisfaction
of a system cost requirement. A third important cate-
gory of traceability occurs with the linking of system
requirements to domain requirements (i.e., a system
cannot work until the system requirements have satis-
fied the relevant domain requirements). Figure 19 illus-
trates a scenario where requirements deal with the
physical limitations of a network operating at 100
Mbps. In general, a certain type of network cable,
CAT5, must be used in such a network. Further, this
cable has a physical limitation of roughly 100 meters
over which it can transport a signal. These domain
requirements exist regardless of the system require-
ments. Since this system has a requirement to operate
at 100 Mbps, the domain requirements become appli-
cable, and must trace to system requirements. Figure 19
shows this trace, as well as the allocation of these
system requirements to system component attributes.
The relevant query might ask: “Show all relationships
with system network requirements?” We see there is a
connection from a network requirement (not specified
by any domain requirements) to the Router compo-
nent’s WAN speed attribute.

Figure 17. Office computing system higraph model: behavior requirements association with use cases.

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 17

Systems Engineering DOI 10.1002/sys

Figure 18. Office computing system: abbreviated higraph model of cost requirements allocation.

Figure 19. Office computing system: domain requirements allocation.

18 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

6.2. Behavioral Requirements Traceability

Tracing behavior requirements to system states is only
part of the design process. System behaviors that cause
transitions into and out of system states have to be
allocated to functions in system components. Like
structure requirements and component attributes, be-
havior requirements trace through system behaviors to
component functions, as illustrated by the comprehen-
sive example shown in Figure 20. All of the functions
that cause transitions into states in the “Email Running”
behavior diagram must correspond to component func-
tions in the system structure model. Functions are allo-
cated to the e-mail software, POP3 software, and SMTP
software components. It is important to note the direc-
tion of the colored edges. The edge comes from a
system behavior (which causes a transition to a required
system state) to a function in a system component. Also,
the edges from the e-mail node to the POP3 and SMTP
nodes imply inheritance (not allocation). This would be
specified through a user’s definition of edges used in
the system higraph model. The Compose, Read, Re-
ceive, and Send e-mail behaviors are allocated to sys-
tem component functions, but the StartApplication()
behaviors remain unallocated. An appropriate query
can establish these links, as shown in the upper half of
Figure 20.

6.3. Mathematical and Logical Model

Sections 6.1 and 6.2 have focused on higraphs as a
mechanism for visually conveying information. How-
ever, the real power of the higraph system model comes
from the higraph quadruple H = (B, E, ρ, Π). After the
requirements, structure, and behavior models exist and
are connected, a good way to begin construction of the
math model is to define all of the possible meanings
behind each node, edge, hierarchy, and orthogonal re-
gion. Tables III–VI show the nodes, edges, hierarchy
classifications, and use of orthogonalization to repre-
sent the system model. Each table row defines a set
corresponding to a particular logical organization. For
instance, each node in any part of the Office Network
higraph will fall into one of these sets. The set B1-2-1-2

(system behavior requirements) consists of four nodes:
Power On, Power Off, Run Applications, and Run
Security (see Fig. 17). When the hierarchy portion of
the model is defined (see details below), any nodes that
fall under these four would also make up the set B1-2-1-2.

Table IV shows a list of all of the logical definitions
applied to edges. Again, each row in the table defines
the logical sets of edges that make up the office network
higraph model. For instance, the set E6 (Satisfaction of
a Domain Requirement by a System Requirement) con-

sists of the three edges shown in Figure 19 that domain
requirements to network requirements.

A set by itself is not terribly helpful. Even if all nodes
are defined and grouped according to Table III, we still
need to know where they fall in the higraph. These
details are obtained from Tables V and VI, which spec-
ify the hierarchy and orthogonality organization of the
higraph. As a case in point, ρ3 (Association of Attributes
with a Component) for the hardware component would
be a set of three nodes (nodes of type Attribute—B2-1-1):
power consumption, cost, commercial availability. An
example of a hierarchy set is Π1 (requirements domain),
which consists of four nodes: structural requirements,
cost requirements, power requirements, and behavioral
requirements (see Figs. 17 and 18). Of course, to know
how anything relates to anything else in the system, we
also need to know the set of edges.

6.4. Using the Office Network Higraph
Model

A strength of the higraph model is the ability to query
it to create custom views, elicit very specific informa-
tion, or discover certain relationships among system
requirements, behaviors, and components. These que-
ries are really queries of the higraph quadruple stored
within the higraph tables. Suppose, for example, that
our requirement to interface the office network with a
T3 WAN link (see Fig. 19) was changed to interface
with a higher speed STM1 WAN link. What would the
impact to the system be? We would query the model to
find what relationships exist that can be traced to the
requirement node B1-1 (The system shall interface with
a T3 WAN link). To do this, we would query the Edges
set for any occurrence of B1-1 (The system shall inter-
face with a T3 WAN link). From our higraph equation,
and from Figure 19 we determine that there exists an
edge, E5-1 [B1-1 (The system shall interface with a T3
WAN link), B2-1-1 (WAN Speed)]. As illustrated in Table
III, these are attributes of nodes in the higraph structure.
The query would then trace up through the hierarchy to
find what component the B2-1-1 (WAN Speed) attribute
is allocated to.

How would the query know to perform this second
trace to find an affected component? It’s because the
edge we found, E5-1, has a meaning of “Assignment of
a Structure Requirement to a Component Attribute.”
Moving up through the hierarchy from B2-1-1 (WAN
Speed) the query would find that B2-1-1 (WAN Speed)
belongs to the set ρ3 (Router) = [B2-1-1 (WAN Speed),
B2-1-1 (i.e., number of WAN Ports)]. These details can
be found in Tables III and V. The relationship between
WAN Speed and Router is illustrated in Figure 19. We
now know that we have to modify the router component

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 19

Systems Engineering DOI 10.1002/sys

Figure 20. Office computing system: higraph model showing behavior allocation.

20 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

to change the WAN speed to meet the new requirement.
Once we modify/replace the Router component with
one that meets this new STM1 WAN requirement, we
would continue with trace that examines all edges com-
ing from the router component to ensure no other re-
quirements, structures, or behaviors have been
adversely affected by our change. Such a trace would

reveal, among other things, that we must remain within
power and cost budgets (see Fig. 18). Does our new
component satisfy these? The next trace to find all cost
and power attributes from components within the sys-
tem, sum them respectively, and evaluate those totals
against the system requirements will provide us the
answer.

 Table III. Office Network Higraph Model: Node Definitions

 Table IV. Office Network Higraph Model: Edge Definitions

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 21

Systems Engineering DOI 10.1002/sys

There are, of course, an almost infinite number of
possibilities for queries against the system higraph
model. In an industrial setting, many queries would
result from changed requirements, but others may result
from stakeholder information requests (e.g., finance
wants to know what the total cost of the system is) or
equipment obsolescence (e.g., a certain software pack-
age has reached its end of life). Once implemented in
software, the series of traces and evaluations to provide
the results of a query will be as automated as possible
based on the user defined tables for nodes, edges, hier-
archy, and orthogonality, and changes users make to
the. In this manner, the higraph model serves not only
to present information, but to show and validate how
the system is put together.

7. CONCLUSIONS AND FUTURE WORK

Higraphs are a useful tool for organizing and connect-
ing data and information generated during the system
engineering lifecycle. They can be defined mathemati-
cally and logically, which clears any ambiguities from
the system model, as well as allows for the system
model to be “smart” in the way it responds to queries
for specific information. The data that are presented as
a result of a query on the system model can be used by

system engineers to make knowledgeable design, im-
plementation, operational, and support decisions for the
system. Unfortunately, these benefits do not come with-
out costs. Because components from anywhere in a
system model can have a relationship (connection) to
components anywhere else in that system model, hi-
graph models can quickly become very detailed, pre-
senting engineers with too much data and information
to work with simultaneously at any one time. For a
given higraph, the process of arranging the nodes and
edges in a visual layout that maximizes communication
of information to an end-user is far from trivial. Harel
says of this issue [Grossman and Harel, 1997]: “In
practice, overlaps should probably be used somewhat
sparingly, as overly overlapping blobs might detract
from the clarity of the total diagram.” Still this solves
only part of the problem. To mitigate the possibility of
overwhelming the end user, there must be a filter (or
abstraction tool) that mines the higraph and presents
only the desired information to the end-user in response
to specific queries. In other words, in order for such a
methodology and tool to be useful in industry, higraph
modeling languages must be able to interface with a
software tool to perform this filtering.

Looking forward, any software tool that implements
higraphs would, at a minimum, have to allow the fol-
lowing tasks: (1) create a system requirements higraph

 Table VI. Office Network Higraph Model: Orthogonality Definitions

 Table V. Office Network Higraph Model: Hierarchy Definitions

22 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

from user inputs, (2) create a system structure higraph
from user inputs, (3) create a system behavior higraph
from user inputs, (4) allow the user to define types of
nodes, edges, hierarchies, and orthogonalities, and (5)
allow the user to connect nodes via edges. Generating
these viewpoints is a matter of following a select group
of edges from specific nodes in the higraph. Suppose,
for example, that an engineer needs to find all require-
ments associated with a specific system component,
He/she only needs to trace all “requirements” emanat-
ing coming from the component node in the higraph.
Likewise, the costs associated with a specific subsystem
can be retrieved by pulling all of the cost attributes from
the components that make up this subsystem. The inter-
faces available to create and define these things could
vary. User inputs could come from XML forms, spread-
sheets, text files, or developed graphical user interfaces
(GUI’s). Translation rules could be applied to import
existing artifacts (e.g., class diagrams, statecharts, etc.)
into a new higraph model. Transformation tools like
XSLT [XSLT, 2002] could conceivably be used to auto-
matically generate UML/SysML diagrams—thus, a
software environment where higraphs and
UML/SysML representations coexist certainly seems
feasible. To the extent possible, another software tool
could automate the translation of UML/SysML dia-
grams to higraphs, and vice versa.

REFERENCES

M. Austin, Lecture Notes for ENSE 621/ENPM 641: Visual
modeling of engineering systems with UML, September
2002.

M.A. Austin, V. Mayank, N. Shmunis, and R.M. Paladin,
Graph-based visualization of requirements organized for
team-based design, Syst Eng 9(2) (2006), 129–145.

A. Bell, Death by UML fever, ACM Queue 2(1) (2004),
http://www.acmqueue.com.

K. Berkenkotter, Using UML 2.0 in real-time development:
A crit ical review, 2003. See http://www-veri-
mag.imag.fr.itemBlackP.,DirectedAcyclicGraphs–from
DictionaryofAlgorithms and Data Structures, 2006. See
http://www.nist.gov/dads/HTML/directAcycGraph.html.

V. Chachra, P.M. Ghare, and J.M. Moore, Applications of
graph theory applications, Elsevier North Holland, New
York, 1979.

A. Dupagne and A. Teller, Hypergraph formalism for urban
form specification, COST C4 Final Conf, Kiruna, Septem-
ber 21–22, 1998.

K. Fogarty, System modeling and traceability applications of
the higraph formalism, MS Thesis, Institute for Systems
Research, University of Maryland, College Park, May
2006.zaq;3

K. Fogarty and M. Austin, System modeling and traceability
applications of the higraph formalism, ISR Technical Re-

port XXX, Institute for Systems Research, University of
Maryland, College Park, August 2007, p. 49.

O. Grossman and D. Harel, On the algorithmics of higraphs,
Technical Report, Rehovot, Israel, 1997.

D. Harel, Statecharts: A visual formalism for complex sys-
tems, Sci Comp Program 8 (1987), 231–274.

D. Harel, On visual formalisms, Commun ACM 31 (1988),
514–530.

Headway Software Inc., Closed Loop Development with
Headway ReView,zaq;4 June 2001.

P. Letelier, A framework for requirements traceability in UML
projects, 1st Int Workshop Traceability Emerging Forms
Software Eng, in conjunction with 17th IEEE Int Conf
Automated Software Eng, 2002.

Microsoft Corporation, Microsoft Office Visio Standard
CDROM,zaq;4 2003.

M. Minas, Hypergraphs and a uniform diagram repre-
sentation model, Proc 6th Int Workshop Theory Appl
Graph Transformations (TAGT, 98), Paderborn, Germany,
1998.

D. Muller, Requirements engineering knowledge manage-
ment based on STEP AP233, 2003.zaq;5

T. Munzner, Interactive visualization of large graphs and
networks, Ph.D. Thesis, Stanford University, Palo Alto,
CA, 2000.

D. Oliver, AP233—INCOSE status report, INCOSE IN-
SIGHT 5(3) (October 2002).

The Object Management Group, What is OMG-UML and
why is it important, http://www.omg.org/news/
pr97/umlprimer.html, 1997.zaq;3

R.F. Paige, Heterogeneous specifications and their applica-
tion to software development, Technical Report, Toronto,
Canada, August 1995.zaq;6

M. Ramaswamy and S. Sarkar, Using Directed hypergraphs
to verify rule-based expert systems, IEEE Trans Knowl-
edge Data Eng 9(2) (1997), 221–237.

Rational Software Corporation, Microsoft Software Corpora-
tion, UML summary, Version 1.1, http://umlcenter.visual-
paradigm.com/umlresources/summ 11.pdf, September
1997.

SysML Partners, Systems Modeling Language specification,
Version 0.9 DRAFT, http://www.sysml.org/arti-
facts/specs/SysML-v0.9-PDF-050110.zip, January
2005a.

SysML Partners, Systems Modeling Language specification,
Version 1 .0 alpha, h t tp: / /www.sysml.org/arti-
facts/specs/SysMLv1.0a-051114R1.pdf, November
2005b.

Teamcenter (formallySLATE), http://www.plm.automat-
ion.siemens.com/en us/products/teamcenter/, 2008.

T e l e l o g i c , A B . T e l e l o g i c D O O R S ,
http://www.telelogic.com/corp/products/doors/doors/in
dex.cfm, 2006.

Unified Modeling Language(UML), http://www.omg.org/
uml, 2003.

UML Forum, UML FAQ, ht tp ://www.uml-fo-
rum.com/faq.htm, 2006.

 SYSTEM MODELING AND TRACEABILITY APPLICATIONS OF THE HIGRAPH FORMALISM 23

Systems Engineering DOI 10.1002/sys

UML Glossary, Computer Science Department, California
State Universi ty, San Bernardino, CA,
http://www.csci.csusb.edu/dick/samples/uml.glossary.h
tml, June 2006.

Wiki, Graph theory at Wikipedia, http://en.wikipedia.org/
wiki/Graph theory, 2006.

M. Wissen and J. Ziegler, A methodology for the component-
based development of Web applications, Proc 10th Int
Conf Human-Computer Interaction (HCI International
2003), volume 1, Crete, Greece, 2003.

XML Stylesheet Transformation Language(XSLT),
http://www.w3.org/Style/XSL, 2002.

Kevin Fogarty is a Senior Systems Engineer with Science Applications International Corporation (SAIC)
working out of their Columbia, MD office. He specializes in systems integration, with a focus on optical
communications technology. Mr. Fogarty holds a Masters Degree in Systems Engineering from the
University of Maryland (College Park) and a Bachelors degree in Computer Engineering from Virginia
Tech.

Mark Austin is an Associate Professor at the University of Maryland, College Park, with joint appointments
in the Department of Civil and Environmental Engineering and the Institute for Systems Research (ISR).
Mark is past director of the Program for Master of Science in Systems Engineering (MSSE) at ISR. He
is also Associate Director of the Systems Engineering and Integration Laboratory at ISR, and past co-chair
of ICOSE’s Commercial Practices Interest Working Group (CPIWG). His Ph.D. and M.S. degrees are
from the University of California Berkeley. He also has a B.E. (First Class Honors) in Civil Engineering
from the University of Canterbury, New Zealand.

<enote>AQ1: Please supply Key words
<enote>AQ2: Please list in References
<enote>AQ3: Please cite in text
<enote>AQ4: Please give city
<enote>AQ5: More information needed: Report?

Journal article?
<enote>AQ6: Please give sponsoring institution

24 FOGARTY AND AUSTIN

Systems Engineering DOI 10.1002/sys

