System Level Development of a Platform for Studying Bacterial Biofilms

Matthew P. Mosteller May 2011

2 May 2011

MATTHEW MOSTELLER

ENSE 622

Motivation

- Bacterial Biofilms
 - Responsible for 65 80 % of all infections
 - 90% of harmful bacteria exist as biofilms at a point in their lifetime
 - Formation of biofilms initializes release of harmful toxins
 - Density of biofilms makes drug treatment more difficult
- Application Areas
 - Pharmaceutical development
 - Biological research
 - Environmental applications

Motivation

Investigation of biofilms can be <u>expensive</u> and <u>time consuming</u>!

- Microfluidics
 - Drastically decreases fluid volumes (mL $\rightarrow \mu$ L)
 - Drastically decreases assay time (days \rightarrow hours)
- Modeling
 - Overall decrease in the number of experiments needed
 - Overall increase in confidence in results

Bacterial Biofilm Found in a Catheter (www.cdc.gov)

Biomedical Testing Instrumentation (Nature: Methods)

Goals and Scenarios

- Integrated Experimental Platform
 - Microfluidic environment for biofilm growth
 - Computer-based model for biofilm growth simulation and parametric analysis
 - Integrated sensor network to detect growth *in situ*
 - Interfacing of hardware components and software
- Operation Scenarios
 - User-defined experiment parameters based on simulation results
 - Real-time adjustment of experiment parameters to "direct" biofilm growth characteristics
 - High parallelism and easy system reuse

System-Level Requirements

Requirement Category	Req. Number	Description	
Biofilm Growth Simulation	R1	Errors maintained within 10% of experimental results	
Microfluidic Environment	R1	Repeatability of experiments within 20% variation	
Sensing and Data Processing	R1	Self-contained system	
	R2	Reliable with little internal error/variability	
	R3	Non-invasive sensing method that can operate <i>in situ</i>	
Experimental Control	R1	Real-time adjustment of experimental parameters	
	R2	High user confidence in accuracy of experimental parameters	

Platform-Level Requirements

Requirement Category	Req. Number	Description	
Biofilm Growth Simulation	R1	Input of all critical parameters in simulation (e.g. bacteria type, flow rate, temperature, growth media)	
	R2	Simulation software is readily available at low cost	
Microfluidic Environment	R1	Integrate fluid environment with prescribed sensing method	
	R2	Use of biocompatible materials	
	R3	Cost effective process with batch fabrication giving an economy of scale: price $<$ \$5.00 / unit	
Sensing and Data Processing	R1	Interact with microfluidic growth environment	
	R3	Data processing provides output in graphical formats	
Experimental Control	R1	Control of all critical experiment parameters (e.g. flow rate, temperature, experiment time)	
	R2	Changes in experimental parameters are quantitatively recordable	

Use Case Analysis

System Behavior Analysis

Lower-level activity and sequence diagrams further specify system behaviors !

System Structure Analysis

MATTHEW MOSTELLER

System-Level Design and Integration

Utilize system-level modeling to map system behaviors to a physical system design

Composite-structure diagram shows interfaces between system components and relationships between them

2 May 2011	MATTHEW MOSTELLER	ENSE 622

System-Level Design and Integration

Communication diagram shows <u>messages</u> between system components and <u>relative timing</u> of these communications

2 May 2011	MATTHEW MOSTELLER	ENSE 622

Library of Reusable Components

- Rationale: to provide a tool for making design decisions for experimental platforms for biofilm studies
- Key Factors
 - Interfacing <u>data transfer</u> and <u>physical coupling</u> of components
 - Measures of effectiveness: cost, versatility, processing time, etc.
 - System-level and component-level measures of effectiveness
 - Parametric tradeoff between various designs

Library of Reusable Components

Example:

cross-hierarchy coupling of a sensor network (experimental system) and a data processor (software system)

Implementation:

connect (sensor_network.a, data processor.a);
connect (sensor_network.b, data_processor.b);

System Trade-Off Analysis

Туре	Option	Cost (\$)	Versatility	Performance	Process Time	Repeatability
Sensor	SN1	50	0.8	1.2	0.6	0.6
Network	SN2	100	0.6	1.2	0.4	0.8
Experimental	ES 1	400	0.5	1.3	0.5	0.8
Setup	ES 2	1000	0.9	1.7	0.7	1.0
	DP 1	500	0.7	1.2	0.4	0.8
Data Processor	DP 2	750	0.75	1.4	0.5	0.9
Biofilm Growth Sim	BGS 1	800	0.9	1.0	0.2	0.8
	BGS 2	500	0.4	0.9	0.3	0.6

 $Cost = C_{SN} + C_{ES} + C_{DP} + C_{BGS}$ $Versatility = V_{SN} + V_{ES} + V_{DP} + V_{BGS}$ $Performance = P_{SN} + P_{ES} + P_{DP} + P_{BGS}$ $P_{XX} = Process Time_{XX} + Repeatability_{XX}$

System Trade-Off Analysis

- 16 Possible Design Configurations
- Soft Constraints
 - Total Cost < \$2,500
 - Total Versatility > 2.70
 - Total Performance > 4.80

Performance vs. Versatility

System Trade-Off Analysis

Trade-Off Curve		Points of Interest		
Cost vs. Pe	Cost vs. Performance		3, 4, 6, 11, 12, 15, 16	
Cost vs. V	Cost vs. Versatility		1, 3, 4, 5, 6, 11, 15	
Performance	Performance vs. Versatility		3, 4, 6, 7, 11, 15	
Ove	Overall		3, 4, 6, 11, 15	
Design No.	Cost	Versatility	Performance	
3	2350	3.3	5.1	
4	2400	3.1	5.1	
6	2050	2.75	4.9	
11	2050	2.8	5.0	
15	2300	2.85	E 2	

Design Comparisons

- 3 vs. 4
 - 3 wins (less cost & better versatility)
- 6 vs. 11
 - 11 wins (increase in performance & versatility for less cost)
- 3 vs. 15
 - 3 wins (15.8% increase in versatility, 1.9% increase in performance, only 2.2% cost increase)
 - 3 vs. 11

٠

11 wins (17.8% increase in versatility but at a cost increase of 14.6%. Cost is more important than versatility)

Design Option 11			
Component Selection		Performance Characteristics	
Sensor Network	SN 1	Cost	\$2050
Experimental Setup	ES 2	Versatility	2.8
Data Processor	DP 1	Process Time	2.0
Biofilm Growth Sim	BGS 2	Repeatability	3.0

Conclusions

- 1. Developed system-level design of a bacterial biofilm experimental platform
 - System behavior
 - System structure
 - System Integration
- 2. Created a basis for a library of reusable components using the Modelica® language
 - Tool to streamline the design of similar systems
- 3. Trade-off analysis of system measures of effectiveness

Thank You Questions

2 MAY 2011

MATTHEW MOSTELLER

ENSE 622

References

- [1] A. Storti, et. al. "Detection of mixed microbial biofilms on central venous catheters removed from intensive care unit patients," *Brazilian Journal of Microbiology*, vol. 36, no. 3, September 2005.
- [2] B. Purevdorj, et. al., "Influence of hydrodynamics and cell signaliing on the structure and behavior of pseudomonas aeruginosa biofilms," *Applied and Environmental Microbiology*, Vol. 68, No. 9, pp. 4457-4464, 2002.
- [3] C. Koniver. (2010). 10 Health Topics for 2010. [Online]. Available: http://www.primaryplus.com
- [4] C. Picioreanu, et. al., "Discrete-differential modelling of biofilm structure," *Wat. Science and Technology*, Vol. 39, No. 7, pp. 115-122, 1999.
- [5] J.J. Richards, C. Melander, "Controlling bacterial biofilms," *Chemistry and Biochemistry*, Vol. 10, pp. 2287-2294, 2009.
- [6] M. Austin, "ENSE 621 systems engineering concepts, issues, and processes," *Univ. of Maryland*, 2010.
- [7] M. Austin, "ENSE 622 information-centric systems engineering," Univ. of Maryland, 2011.
- [8] R. Duddu, et. al., "A combined extended finite element and level set method for biofilm growth," *International Journal for Numerical Methods in Engineering*, Vol. 74, pp. 848-870, 2008.
- [9] V. Janakiraman, et. al., "Modeling growth and quorum sensing in biofilms grown in microfluidic channels," *Annals of Biomedical Engineering*, Vol. 37, No. 6, pp. 1206-1216, June 2009.