Formal Model-Based Design & Manufacture:

A Template for Managing Complexity in Large-Scale Cyber-Physical Systems

Paul Eremenko

fmr. Deputy Director/Acting Director Tactical Technology Office

Briefing prepared for the Conference on Systems Engineering Research

March 21, 2013

The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

"... the sum of \$688,888... to provide, equip and employ, four ships to carry forty guns each, and two ships to carry thirty-six guns each...." --An Act to Provide a Naval Armament, March 27, 1794

USS Philadelphia, Tripoli Harbor, February 16, 1804

"It is desired that the requirements set forth be considered as a goal and that the proposal be for an interim airplane to approximate all requirements, except that emphasis must be placed on meeting the high speed requirement... It is the intent that design proposals should present the best possible over-all airplane..." --Directive letter inviting design proposals for the B-52 bomber, February 13, 1946

DARPA F-111 Aardvark (1961)

DARPA F-35 Joint Strike Fighter (2001)

DARPA Kolmogorov complexity (sort of)

Software complexity

Dvorak, D. ed, NASA Study on Flight Software Complexity, Jet Propulsion Laboratory, California Institute of Technology, 5 March2009 Borden, D., Software Acquisition Process Improvement, NAVAIR, undated Agle, D.C., Where Hunters Growl, Air & Space magazine, March 2011

Contributors to Price Escalation from the F-15A (1975) to the F-22A (2005)

Tools have made it better...

Image courtesy of Dassault Systemes

Lockheed Martin F-35 Shimming and 'drill and fill' approach significantly worsens production learning effects, leading to delays and cost growth*

> * GAO-10-382: Joint Strike Fighter – Additional Costs and Delays Risk Not Meeting Warfighter Requirements on Time, Mar 2010

Dassault Falcon 7X Two-fold schedule compression for new business jets through faithful application of a digital master model with QA/QC feedback by tail number

Engineering Change Requests (ECRs) per Month of Program Life

Mariner Spacecraft (1960s)

From Project Inception through Midcourse Maneuver, vol. 1 of Mariner Mars 1964 Project Report: Mission and Spacecraft Development, Technical Report No. 32-740, 1 March 1965, JPLA 8-28, p. 32, fig. 20.

Giffin M., de Weck O., et al., *Change Propagation Analysis in Complex Technical Systems*, J. Mech. Design, 131 (8), Aug. 2009.

Modern Cyber-Electromechanical System (2000s)

Adaptive Vehicle Make

DARPA Approaches for tackling complexity

Simplify

Disaggregate

DARPA goals for AVM

Existence proof—VLSI design

Existence proof—foundry-style manufacturing

An approach to VLSI chip design that separates design from manufacturing (Mead & Conway, 1979).

Design implementation:

Use of simplified device & component models that trade some performance for automation of design.

Design rules that are independent of and scalable with process technologies.

Semiconductor manufacturing facility becomes the semiconductor foundry.

Semiconductor product implementation:

Chip prototypes are manufactured in silicon foundries using the *same tools, fabrication processes and materials* used for high-volume chip manufacturing... no seams.

The result:

Moved from hundreds of chip designers using verticallyintegrated, captive semiconductor facilities to tens of thousands of designers using pure-play semiconductor foundries to create thousands of products.

Continues to enable, cost-effective custom VLSI products: Generating new markets & new companies including Apple, Silicon Graphics, Cadence, Jazz, TSMC, Broadcom, Nvidia and Qualcomm.

Formal Model-Based Design

As of today:

- 131 component classes
- 469 component instances
- 43 parametric components
- 112 ITAR protected models
- 357 non-ITAR protected models

Slope

DARPA Context models

Cor	ntext [Descriptions	Available for Test
Land Environment			Bench
Surface Characteristics (for	Dept	of Interest)	
Concrete	Debri	ror interest)	×
Paved			x
Dirt	~		x
Sand	Mo	deled & Validated: 17/22	x
Wet	IVIO	deled & validated. 17722	x
Mud	De	ivered: 17/22	x
Snow			
lce			
Discrete Obstacles (Forwar	d and	Reverse, and at Angles)	
Step Climb			х
Step Descend			x
Gap Crossing			х
V-Ditch			x
Half-Round			x
Curb			x
Features found in MOUT (Milita	ry Operations in Urban Terrain)	x
Jersey Barrier (Highway D	ivider		x
Improvised Obstacles (e.g	., pas	senger cars)	x
Terrains			
Terrains of varying roughn	ess (F	lat to 5" in rms)	x
Longitudinal Grades (Form	vard a	nd Reverse)	x
Side-to-Side Slopes (Eithe	er side	up-hill)	
Combined Grade and Slop	oe (Fo	re-Aft and Side-to-Side)	
Curvature (Turns, Crown,	Trough	1)	
Aquatic Environment			
Water Properties			
Density			x
Temperature			x
Viscosity			
Thermal Conductivity	h-		
Specific Heat	Mo	deled & Validated: 7/13	
Water Body Features	IVIO	deled & validated. 1115	
Depth	De	ivered: 6/13	х
Calm			x
Surf			
Currents			
Sea-State			x
Contaminants			
Salt			х
Particulates (Sand, Volca	nic As	sh)	
Debris (Vegetation, Spills)		
Atmospheric Environment			
Air Properties			
Pressure			
Density			
Moisture			X
Temperature (Arctic, Cold	, Norr	nal, Hot)	x
Temperature (Locally Indu	iced)	Madalad 0.14 Photo 1. Olio	
Atmospheric Features		Modeled & Validated: 6/10	
Wind		Delivered: 4/10	X
Solar Radiation		Denvered. 4/10	х
Contaminants			
Corrosive Components (S	alt sp	ray, SO ₂ , NO _x)	
Particulates (Dust, Sand,	Volca	nic Ash, Rain, Snow, Ice Crystals)	
Electro Magnetic Interfere	nce (l	EMI)/ Electro Magnetic Pulse (EMP)	
Nuclear Biological Chemi	cal (N	BC)	
			23

Source: BAE Systems Land & Armaments Division

Integration of formal semantics across domains

DARPA Hierarchical abstraction—subassembly/component level

DARPA Cloud-hosted commercial tools instantiation

Embedded Software Synthesis

- Auto code generation
- · Generation of hardwarespecific timing models
- Monte Carlo simulation sampling to co-verify
- Hybrid model checking under investigation

Computing **CAD & Partial Differential Equation Models**

- Generate composed CAD geometry for iFAB
- Generate structured & unstructured grids
- · Provide constraints and input data to PDE solvers
- · Couple to existing FEA, CFD, EMI, & blast codes
- 10 \rightarrow 1 design

Static Trade Space Exploration META DASHBOARD

- Static constraint application
- Manufacturability constraints
- Structural complexity metrics
- Info entropy complexity metrics
- Identify Pareto-dominant designs
- $10^{10} \rightarrow 10^{4}$ designs

Linear Differential Equation Models

et int	The bullet Baldweet ter balat	faren passa lite.
C C E France Fra		USC -

- Models are fully composable
- Simulation trace sampling to verify correctness probability
- Application of probabilistic model checking under investigation
- $10^2 \rightarrow 10$ designs

Qualitative Reasoning

- Computationally inexpensive
- Quickly eliminate undesirable designs
- State space reachability analysis
- $10^{4} \rightarrow 10^{3}$ designs

Relational Abstraction

- Relational abstraction of dynamics
- Discretization of continuous state space
- Enables formal model checking
- State-space reachability analysis
- $10^3 \rightarrow 10^2$ designs

Verification on a adiabatic quantum computer

1000

Leda, 28 qubits

Vesuvius, 512 qubits

Calypso, 4 qubits

Number of Variables [N]

Probabilistic verification through simulation

Design space visualization

Model-Based Manufacturing

As of today:

- 7 material shaping processes ٠
- 19 general processes •
- 231 machine instantiations ٠
- 64 manual labor units •
- 3,212 tools •

Topological Decomposition

DARPA Foundry configuration tradespace exploration

DARPA Sequencing & scheduling

COTS Providers

- Part Decomposition ~10 min
- Assembly Analysis ~120 min
- Purchased Parts ~1 min
- Manufactured Parts

Joint Manufacturing Technology Center Rock Island Arsenal, IL

- aPriori ~2 min/part
- CNC-Ana ~35 min
- Design Configuration ~10 min
- Build Schedule Gen ~5 min

Information

Agreements

Goods

Ecosystem

DARPA Collaboration platform—configuration control

42

Collaboration platform—immersive multi-user visualization

Sources: Electrotank; Vanderbilt ISIS

Critical scale for a model-based product ecosystem

Sources: Ferrari, A. *An Overview of (Electronic) System Level Design: beyond hardware-software co-design,* SFM-06:HV, Univ. of Urbino 2006; Jorge Tierno, Boston Fusion

FANG Challenge 1 – Mobility and Drivetrain subsystems Prize: \$1,000,000

Initial roll-out - 1/14/2013 Finalist team selection - 3/17/2013 Registration closes - 4/1/13 Challenge closes - 4/15/2013 Winner announced - 4/22/2013 Build - Summer 2013 (tbd) As of today:

- 1,077 participants
- 267 total teams
- 18 teams qualified for finals
- Largest team size ~ 27

www.vehicleforge.org

FANG Challenge 2 – Chassis and Structural subsystems Prize: \$1,000,000

Modeling shows promise for 5X time compression

For more information:

FANG Challenges: <u>http://www.vehicleforge.org</u> Source Code: <u>http://www.cps-vo.org</u>

DARPA PM: nathan.wiedenman@darpa.mil

Me: eremenko@alum.mit.edu

Coming soon... special issue of Journal of SE!