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Abstract

This research presents an approach to the
automatic generation of electromechanical
engineering designs. Our intent is to apply the
Messy Genetic Algorithm optimization
techniques to the evolution of assemblies
composed of the Lego structures.  Each design is
represented as a labeled assembly graph. Designs
are evaluated based on a set of behavior and
structural equations, which we are trying to
optimize. Our eventual goal is to introduce a
simulation of electromechanical devices into our
evaluation functions.  The initial populations are
generated at random. The design candidates for
subsequent generations are produced by user
specified selection technique.  Crossovers are
applied by using cut and splice operators at the
random points of the chromosomes; random
mutations are applied to modify the graph with a
certain low probability. This cycle will continue
until a suitable design is found.  The research
contributions in this work include the
development of a new GA encoding scheme for
mechanical assemblies (Legos), as well as the
creation of selection criteria for this domain.  We
believe that this research creates a foundation for
future work and it will apply GA techniques to
the evolution of more complex and realistic
electromechanical structures.
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1 INTRODUCTION
This paper explores a graph-grammar-based approach to
use Genetic Algorithms (GAs) to evolve Lego assemblies
in an unknown design space.
After some brief background on Genetic Algorithms and
their application to Engineering Design, we describe our
initial research goal: to create a unified graph-grammar-
based design generation tool that can evolve
geometrically and structurally valid designs to solve a
functionally specified set of design constraints.  We
provide a description of the representation scheme for
Lego assemblies and describe how a GA can be applied to
evolve Lego structures.
Our algorithm combines the knowledge of physical
properties of Lego components and evolutionary process
to create more complex mechanisms.  Mechanisms are
then evaluated to determine how well their structure
satisfies the initial design goals and how well the design
conforms to the desired attributes and performance
functions.

2 BACKGROUND

2.1 APPLICATIONS OF GAS IN ENGINEERING
DESIGN.

For certain problems of engineering design, genetic
algorithms have been found to be very effective
optimizers. GAs are particularly useful when the design
space and the nature of the optimum solution is difficult
to formalize during the initial design [7]. Another
advantage is their ability to work simultaneously with a
variety of design variables.
There have been a number of significant research efforts
at applying GAs to engineering design. The work of
Bentley [1] uses GAs to evolve shapes for solid objects
directed by multiple fitness measures.  This structural
engineering problem is known as “structural topology



optimization.”   A similar area was pursued by Jakiela,
who represented structural topology with GA
chromosomes [4][6]. His approach is based on converting
the chromosome into topology, evaluating its fitness and
structural performance, and then assigning a fitness value
to the chromosome. Later work of Jakiela represents a
specification-based design evaluation method and how it
is applied to optimization using GAs [5].  Eric Jones, in
his Ph.D. thesis, successfully applied GAs to evolution of
antennas and logic circuits. [8] He developed a special
grammar, so each valid sentence in this grammar
represents a valid antenna design and encoded sentences
as chromosomes to perform genetic optimization on them.
One of the most successful attempts to apply GAs to the
task of Lego generation was made by J. Pollack and P.
Funes.[9]  Their work used networks  of the torque
propagation to evaluate structures and genetic
programming (rather then a genetic algorithm) operators
to perform optimization. Also they used an assembly tree
to represent Lego structures.  According to Pollack it was
one of the limitation factors of their work.  In our research
we are trying to address this particular limitation.

3 TECHNICAL APPROACH

3.1 PROBLEM FORMULATION
The main contribution of this research is not in the genetic
algorithm itself, but rather in its application to the
practical task of Lego design generation.  We have
selected Lego assembly because it represents a
sufficiently complex, multi-disciplinary design domain
that includes a wide variety of realistic engineering
constraints and the domain is sufficiently discrete as to be
tractable. This problem has great practical value: first,
with growing popularity of Lego robot competitions it is
very beneficial to have a tool for design generation or
optimization, second, generation of Lego assemblies is
closely related to the generation of the real engineering
artifacts, so results of this research may scale to larger
engeneering problems.

3.2 REPRESENTATION OF LEGO
ASSEMBLIES

We use assembly graphs to represent Lego assemblies.
Representing Lego designs as a mechanical assembly
graph has a number potential of advantages over the
assembly tree approach suggested in earlier research [9].
A labeled assembly graph is more expressive and can
represent greater variety of Lego assemblies including
kinematic mechanisms as well as static structures [13].
The nodes of the graph will represent different Lego
elements and the edges of the graph will represent
connections between elements. Another problem that we
were facing was the absence of the notation for describing
valid Lego assemblies. We developed a graph grammar,
similar to the one described by Schmidt [14][15], to

Figure 1. Example Lego structure with assembly graph.

define valid combinations of the nodes and edges
precisely and unambiguously.
Each Lego structure is represented by assembly graph G.
Assembly graph G is a directed labeled graph with non-
empty set N(G) of nodes n, representing Lego elements
and  set E(G) of edges e, representing connections and
relations between those elements [2]. The node label
contains the type and the parameters of the element. For
now, our program can operate only with 3 types of Lego
elements, namely Beam, Brick, and Plate. We will
combine these 3 types under the category Block.
Number and nature of parameters specified in the label
depends on the type of element. For Beam, Brick, and
Plate these parameters are the number of pegs on the
element in X and Y dimensions. We have created a
labeling scheme for the elements of type Axle, Wheel and
Gear and are currently working on introducing it into the
program.

Figure 2. Examples of Lego blocks (left) with labeled
nodes (right).
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The edge label contains the parameters defining the
connection.  An edge can be directed or undirected
depending on the type of the connection.  For now our
program can operate only with one type of Lego
connection a Snap Fit since this is the only possible
connection between Brick, Beam and Plate elements.
Snaps are directed edges with arrows pointing from the
Block, which provides pegs to the Block that provides
connection surfaces.  The Edge label contains the
connection type Snap and a Peg-Pair which is used to
define the Pair of corresponding pegs in the connection
[(PozX1, PozY1); (PozX2, PozY2)]. (PozX1, PozY1)
defines the peg on the Block, which provides pegs, and
(PozX2, PozY2) defines the peg on the Block, which
provides connection surface. This means that the peg on
the block Snap is pointing to always defined second in the
Peg-Pair.

Figure 3. Example of the Peg coordinates and Snap
connection.

3.3 LEGO GRAMMAR.
A parameterized context-sensitive directional graph
grammar was designed to handle three-dimensional
structures assembled from Lego blocks, axles, and
wheels.  The grammar vocabulary is1 {•MECHANISM,
•Module, Connect, •Block, •Element, •Disk, •Pole,
PegPair, ↑Snap, Insert, TInsert, GTrans, •Beam,
•Brick, •Plate, •Wheel, •Gear, •Axle, PozX, PozY, SizeX,
SizeY, Len, Diam, Teeth, Hole (, ), [, ], ;}.  Starting word
of the grammar is {MECHANISM}.  Terminal words of
the grammar are {↑Snap, Insert, TInsert, GTrans,
•Beam, •Brick, •Plate, •Battery, •Motor, •Wheel, •Gear,
•Axle, SizeX, SizeY, Len, PozX, PozY, Diam, Teeth, Hole
(, ), [, ], ;}.  Terminal words “()[],;” are used only to
make sentences easier to read, so most often they will be
ignored on the derivation and syntax trees.
Terminals PozX, PozY, SizeX, SizeY, Len, Diam, Hole and
Teeth are parameters.  Meaning of the parameters SizeX,
SizeY, PozX, and PozY, which are used to define Lego
Blocks and their connections, was described in the
previous paragraph.
These sets can be modified according to the Lego brick
standards.  Len used to specify the number of pegs on the
Lego Beam or the length of an Axle measured in the peg
                                                          
1 For notational purposes, “•” corresponds to nodes in the graph
grammar;  “|” corresponds to an undirected edge; and “↑” to a directed
edge.

Figure 4. Examples of Lego grammar rules.

sizes.  Hole defines the number of the hole in the Beam in
to which Axle is inserted. Diam reflects the diameter of
the wheel. Teeth represent the number of teeth on the
Lego Gear.  This number also uniquely defines the
diameter of the Gear.

PozX ∈ {1 .. SizeX },
PozY ∈ {1 .. SizeY }

SizeX ∈ {1, 2, 4, 6, 8, 10, 12, 16}
SizeY ∈ {1, 2, 4, 6, 8, 10, 12, 16}
Len ∈ {1, 2, 4, 6, 8, 10, 12, 16}

Hole ∈ {1 .. (Len - 1) }
Diam ∈ {17, 30, 43}

Teeth ∈ {8, 16, 24, 40}
 •MECHANISM, •Module, •Element, •Block, •Disk,
•Pole, •Beam, •Brick, •Plate, •Battery, •Motor, •Wheel,
•Gear and •Axle are the nodes of the graph grammar.

∀ x∈ N(G), x∈ { •Block, •Disk, •Pole, •Beam, •Brick,
•Plate, •Battery, •Motor, •Wheel, •Gear, •Axle}

 Module is representing the number of Elements
connected together.  Element represents a single Lego
piece.  Grammar includes three categories of Lego
elements, namely Block, Disk and Pole.
Connect, ↑Snap, Insert, TInsert and GTrans are the
edges of the graph grammar.

∀ y∈ E(G), y∈ { ↑Snap, Insert, Tinsert,GTrans }

2

4

X Snap[(3,1);(1,1)]

Y



Figure 5. Example of the Lego car.

Figure 6. Assembly graph for the Lego car.

We have developed specifications on representation of
wheels gears and axles and their connections an example
of which is the assembly graph in Figure 6 for the Lego
car in Figure 5.  Having a Lego language aided us in
classification of the Lego blocks and connections.  For
now we used the developed notation only to formally
define the requirements documentation. In the future we
plan to introduce another level of abstraction and
represent Lego mechanisms as a sentence in a language of
Lego assemblies, rather than a graph which makes it
easier to validate the assembly against grammar rules [8].
A portion of our Lego graph grammar is shown in Figure
4.

3.4 GA ENCODING SCHEME
In order to perform a GA-based optimization on the
population of assembly graphs, we first have to define a
way to encode the assembly graph as a chromosome.
Currently, the chromosome is represented by a
combination of two data structures: array containing all
nodes N(G) and the adjacency hash table containing all
edges E(G)  with corresponding string keys. This array is
called the genome, and individual elements of the array
called genes. Genome defines what Lego elements will
compose the structure. Key value of the hash table is used
to represent γ function of the graph G, and defines the

Figure 7. Chromosome of the example structure.

position and direction of an edge. Key "1>3" is equivalent
to key "3<1” and means that the edge is located between
nodes 1 and 3 and directed to node number 3. Hash table
defines the way Lego elements will be connected
together.

3.5 GENETIC OPERATIONS ON GRAPHS.

3.5.1  Initialization
The initial population is generated at random. First ten
nodes of random types are generated with random
dimensions. Then, 9 to 13 edges are generated and placed
at random subject to the constraint that the resulting
structure must be physically feasible. In the future we will
look into creating and applying initialization rules to
promote exploration of specific areas of the fitness
landscape.  As an example, one of the rules can be:

All chromosomes must have at least one Lego
element of the specific type.

3.5.2 Mutation
In order to provide the balance between the exploration
vs. exploitation mutation operator is applied with a
constant low probability.  Mutation operator works on the
genome array of the mutated chromosome. After gene
was selected for the mutation it is simply replaced with a
Lego element of the same type and random size.  Some
edges can become invalid after the element was mutated.
In this case these edges are reinitialized at random.
Obviously Mutation has limited ability to change the
structure on the graph and works mostly on the nodes
themselves. We are planning to introduce mutation that
alters edges and further the small sub-graphs.

Figure 8. Sample structure with a mutated beam.

0 Plate(6,2) 0>2 Snap[(1,2)(1,1)]

1 Plate(6,2) 0>3 Snap[(6,2)(2,1)]

2 Brick(2,4) 1>2 Snap[(1,1)(1,4)]

3 Brick(2,4) 1>3 Snap[(6,1)(2,4)]

4 Beam(4,1) 2>4 Snap[(2,2)(1,1)]

3>4 Snap[(1,2)(1,4)]

Axle(10,1)

Beam(1,2)

Beam(1,2)

Wheel(30)

Wheel(30)

Gear(40) Gear(8) Motor(5,4)
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Beam(1,2)Axle(8,1)

Wheel(44)

Wheel(44)

TInsert[1]

TInsert[10]

Insert[7]

TInsert[8]

GTrans

Insert[2]

TInsert[1]

Snap[(1,1)(6,1);(2,1)(2,6)]

Snap[(1,1)(1,1);(1,2)(1,2)]

Snap[(6,1)(5,1);(2,1)(1,1)]

Snap[(2,4)(1,1);(5,4)(4,

Snap[(1,1)(4,13);(1,2)(4,14)] Snap[(1,1)(1,13);(1,2)(1,14)]

Insert[2]

Insert[7]

TInsert[1]

Plate(6,8)

TInsert[8]



3.5.3 Crossover
As in the majority of messy genetic algorithms, crossover
is performed with the help of two genetic operators: cut
and splice. When two chromosomes are chosen for
crossover the cut operator applied to both of them at
independent randomly selected points. Then, tail parts of
the chromosomes spliced with head parts of the other
chromosome. Since selection of the crossover point is
independent for each chromosome, it is obvious that
chromosome length can vary during the evolution
process, to allow for evolution of the assemblies with
different number of elements. In order to cut the
chromosome a random point P is selected between 1 and
N-1 where N is the number of genes in the genome. Then
all genes with the number less than P are considered the
head segment and all genes with the number greater or
equal to P are considered a tail segment.

Figure 9. Sample structure after Cut operator was applied
at the point 3.

Figure 10. Head and tail sub-graphs spliced with one
random edge.

All edges between nodes of two different segments are
deleted, but all edges within the segments are preserved.
In order to splice two segments together the head and tail
segments are placed into one chromosome, which
produces a disjoint graph. Then sub-graphs are joined
with a small number of randomly generated edges.

3.5.4 Evaluation Function
Each structure has a number of attributes, such as weight,
number of nodes, and size in each dimension. These
parameters are used by the evaluation function to
calculate fitness of the structure.  Our eventual goal is to
introduce a simulation of electromechanical devices into
our evaluation function. Generally, evaluation functions
were created according to the following form:

Where Pi is the weight function, which represents the
importance of evaluated parameter as follows: Pi for most
critical parameters, Pj, for less important and  Pk for the
least important.

Pi = x i, Pj = xj
½, Pk = xk

¼

Variable ai denotes the properties user wants to maximize
unconditionally. Reliability can serve as example for such
a parameter. Variable bi denotes the properties user wants
to minimize, such as manufacturing cost. Variable ci are
properties we want to bring as close as possible to the
specific constant ti Sizes in x-y-z dimension can be a good
example of this type of properties.

3.5.5 Handling Over-specified/Under-specified
Chromosomes

As in most of the messy genetic algorithms there is a
chance of over-specified or under-specified chromosome,
generated during the evolution process [3]. Under-
specification means that not all of the required
information is present in the chromosome. Most often it
results in the disjoint assembly graph. In cases like this,
the nodes of the sub-graph containing the 0-th node are
selected to be dominant.  The submissive sub-graph is not
deleted from the chromosome, but is ignored in most
calculations. Figure 9 can demonstrate an example of the
under-specified chromosome (i.e. a disjoint Lego
assembly graph). On the other hand an over-specified
chromosome has more than one value for the same gene.
In Lego structures it either results in the blocks sharing
the same physical space, or are connected by the set of
edges, which imply two different locations for the same
node.  In the first case, the node which was assigned the
location first is marked as dominant, and the node which
was assigned location second is marked as submissive and
ignored in most calculations. In the case when different
edges imply different locations for the same block edge
which traversed first is given priority and other edges are
marked as submissive and ignored.

Figure 11. Example of the blocks sharing same physical
space (left) and infeasible connection edges (right).

( 1+ Σ Pi(ai) )
( 1+ Σ Pi(bi) + Σ Pi(|ci - ti|) )

Plate(6,2)

Plate(6,2)

Brick(2,4)

Brick(2,4)

Beam(4,1)

Snap[(1,2)(1,1)]

Snap[(1,1)(1,4)] Snap[(1,2)(1,4)]

Plate(6,2)

Plate(6,2)

Brick(2,4)

Brick(2,4)

Beam(4,1)

Snap[(1,2)(1,1)]

Snap[(1,1)(1,4)] Snap[(1,2)(1,4)]

Snap[(6,2)(2,1)]

Brick(2,4) Beam(4,1)

Plate(2,6)

Snap[(1,1);(1,1)
]

Snap[(1,1);(1,1)
]

Snap[(1,1);(1,1)
]



4 EXAMPLES AND CURRENT
RESULTS

4.1 SYSTEM DESCRIPTION
Our system was extended from sGA system originally
created by Hartley [16] and written in the Java
programming language. Java3D and VRML97 were used
in order to create a visualizer to monitor Lego structures
as they evolve.  The system supports one-point crossover.
We are planning to introduce uniform and N-point
crossover in the future.  The user can choose from
proportional, rank, universal stochastic sampling, sexual,
sigma scaling, and Boltzman selection techniques.  Other
parameters to the system include mutation and crossover
rates, and population size.  Although the current system
can only handle static structures composed of block type
elements, the general approach can be applied to much
more elaborate kinematic mechanisms.

4.2 EXPERIMENTS

4.2.1 Evolving 10 by 10 by 10 Structure
Figure 12 demonstrates the result of 1000 generations of
evolution of a static Lego structure with predefined
geometric parameters.  In this case the goal was to evolve
a structure with the size of 10 Lego units in each x-y-z
dimension with the minimal weight. In this experiment
the mutation and crossover rates were 0.01 and 0.7
respectively and we employed a rank selection strategy
and elitism on the population of 100 members. The

Figure 12. . Example of the graphical and text output of
our system.

resulting structure was discovered at the generation 895
and has the sizes 10 by 10 by 6.8, which is sufficiently
close to the desired result. Further, we note that this is one
of the lightest possible structures that satisfy these
parameters that can be created from the set of elements
given.  Another run of the similar experiment is shown in
the Figure 13. This structure as discovered by the GA in
the generation 3367 and it is a little bit heavier but it has
perfect 10 by 10 by 10 size.

Figure 13. Example of the graphical and text output of our
system.

4.2.2 Evolving Pillar-Like Structure
 Another line of experiments is shown in Figure 14, where
we were evolving a pillar-like structure. The goal was to
make an assembly with 4 by 2 base in x-y dimension and
20, 40 and 60 length in z dimension. A second constraint
we specified was density: the pillar should have as few
holes as possible. We used the same parameters as in the
first experiment and ran the simulation for various time

Figure 14. Example of the graphical and text output of our
system.



intervals. On average solution was discovered within
5000 generations.  All the structures have desired size,
and have very few defects.

4.3 LIMITATION AND FUTURE WORK.
Currently, our research is in its early stages. We are
planing to introduce more types of Lego elements and
connections. We have specification for encoding elements
of the type Wheel, Gear and Axle as well as connections
between them, but we still have to implement it in code.
Other types of Lego elements such as Motors, Batteries
and their connections have to be described by the
grammar and implemented later.  We are also planning to
develope more realistic physical models, to help us better
evaluate the structures.  All of these enhancements will
help us generate Lego structures more fitted to perform a
specific task.
There are also a number of improvements to the genetic
operators themselves. For example, creating a mutation
operator, which would alter small sub-graphs, will help
algorithm to explore areas of the fitness landscape
neighboring to the solution.
For now the cut operator was applied at random points
often separating elements which should work together
into two different sub-graphs.  We are planing to
introduce a notion of clusters: highly interconnected sub-
graphs loosely coupled together, which would correspond
to the separate modules or “organs.”  System must
promote crossover on the cluster boundaries, and demote
crossover, which brakes up a cluster.
Another improvement, which can significantly speed up
the search, is in using guided or seeded initialization. This
would mean introducing absolute as well as probabilistic
rules and applying them during the generation of the
initial population, or injecting  pre-build mechanisms in to
the initial population.

5 CONCLUSIONS
This paper has introduced our approach, prototype system
and initial experimental results toward the evolution of
Lego structures.  The main research contributions
described in this paper are the development of a graph-
grammar based representation scheme for Lego
Assemblies and its encoding as an assembly graph for
manipulation and evolution by Genetic Algorithms. This
graph-based approach is unlike other systems for Lego
design evolution [10], and we believe that this assembly
graph-based representation scheme is one of the most
general ways of representing the assembly, and in this
way provides a more flexible means to represent a wide
variety of mechanisms for use with GAs. Another unique
feature of our research is the development of a graph
grammar for use in representing Lego assemblies.
Although we used it in all of our requirements
documentation for defining connectivity of the Lego
elements, all of the rules were hard-coded into the system

during the implementation cycle. We believe that Lego
sentences, rather than graphs on the code level, can bring
this approach to a new level.
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