
By: Markus Schmid, Atmel

The number of electronic components in vehicles has
increased rapidly and continuously during recent years.
On the one hand many new sensors and actuators and
therefore new electronic control units have been devel-
oped to make passengers feel safer. On the other hand,
entertainment and navigation systems have made their
way into cars to make travel more comfortable.

To meet the design challenges due to the different
requirements (capacitance, real-time operation and
cost), several new bus systems have been developed or
improved. This article will provide an overview on some
of the most important bus systems currently used in
cars: CAN, LIN, FlexRay™ and MOST. The article
focuses on each bus system's application area and the
provided protocol.

In a car, there are several operating fields with different
requirements regarding the corresponding bus system.
Each of the bus systems mentioned above is used to
serve a certain communication requirement between
the automotive electronic components. The designer
selects the appropriate bus system depending on the
required safety level, the data transmission rate and the
costs. For example, the CAN bus - even though it is
currently the most important automotive bus system -
is not well-suited for very fast data transmission as
needed for multimedia applications. Also, the CAN bus
system is too sophisticated, and therefore too expen-
sive for applications with low data rates, where only few
parts of the system are involved in the transmission, for
example sun roofs or heating systems. For these appli-
cations, new bus systems have been designed.

FlexRay, CAN, and LIN are mainly used for control sys-
tems, whereas MOST is used for telemetric applica-
tions.

MOST - Media Oriented Systems Transport
The MOST bus was developed in 1998 under the lead-
ership of BMW and DaimlerChrysler for all kinds of

automotive multimedia applications such as audio,
video, navigation and telecommunication systems. In
August 2004 the new specification 2.3 was released.

The MOST bus features a very high data rate of up to
24.8 Mbit/s in synchronous and 14.4 Mbit/s in asyn-
chronous transmission mode. It has an additional
asynchronous control channel with a data rate of up to
700 kBit/s. These high data rates make the MOST bus
the best fit for real-time audio and video transmission
applications. To ensure a safe data transmission, an
optical medium (Plastic Optic Fiber, POF), which is not
susceptible to EMC, is used as physical layer.

Furthermore, MOST bus systems support plug&play of
up to 64 nodes, which can be arranged in ring, star or
chain topology. This enable to connect all parts of a
MOST bus system, the so called MOST devices, in a
very flexible way.

MOST Communication
In a MOST network, one device needs to be determined
to be the master of the network. This device will be the
so-called Timing Master, and all other connected
devices are slaves.

The organization of a data transfer according to the
MOST specification is shown in Figure 2.

For control data transport tasks and network manage-
ment, the organization of data transfer in blocks of
frames is required. 16 frames are combined in one
block, each frame consists of 512 bits.

Table 2 (see next page) provides an overview on the
content of these 512 bits.

Synchronous Data
The synchronous area is mainly used for real-time data

transmission like
audio/video or sen-
sor values. Data
access is realized by
using Time Division
Multiplexing (TDM).
Physical channels
can be allocated for
a certain time while
playing an audio
source for example.
It is possible to vary
the band-width by
allocating any num-
ber of bytes to one

logical channel. To route the synchronous data to the
appropriate sink, a routing engine is used.

The number of synchronous data bytes in one frame is
limited to 60 bytes.

www.atmel.com page 29

Automotive Bus Systems
THIS ARTICLE WILL PROVIDE AN

OVERVIEW ON SOME OF THE MOST

IMPORTANT BUS SYSTEMS CURRENTLY

USED IN CARS: CAN, LIN, FLEXRAY™

AND MOST, AND FOCUSES ON EACH

BUS SYSTEM'S APPLICATION AREA

AND THE PROVIDED PROTOCOL.

Table 1: Bus System Overview

LIN CAN FlexRay MOST
Application Low-level Soft real-time Hard real-time Multimedia,

communication systems systems (X-by-wire) telemetrics
systems

Control Single-master Multi-master Multi-master Timing-master

Bus Access Polling CSMA/CA TDMA/FTDMA TDM/CSMA

Bandwidth 19.6 kBit/s 500 kBit/s 10 Mbit/s 24.8 mbit/s

Data Bytes per 0 to 8 0 to 8 0 to 254 0 to 60
Frame

Redundant Not supported Not supported Two channels Not supported
Channel

Physical Layer Electrical Electrical Optical, electrical Mainly optical
(single wire) (twisted pair)

realized by using Carrier Sense Multiple Access
(CSMA), which offers fixed and predictable response
times. Although a complete control data message is
32 bytes long, only two bytes can be transmitted in one
frame. This means that one block (16 frames) is need-
ed to transmit one control data message.

The structure of a control data message is shown in
Table 4.

FlexRay
FlexRay was developed under the leadership of BMW
and DaimlerChrysler in 1999 especially for the new X-
by-wire systems, such as steer-by-wire systems or

brake-by-wire, which
require a very good
error management
along with high
transmission data
rates. Atmel is also a
member of the
FlexRay consortium,
which released the
latest specification
2.0 in June 2004.

FlexRay is based on
the communication
system “byteflight”,
which was devel-
oped by BMW earli-
er. To meet the
requirements of the
new bus systems,
the byteflight
method has been
improved in terms of
chronological deter-
ministic and fault tol-
erance.

FlexRay supports
data transmission

with a bandwidth of up to 10 Mbit/s and is thus well-
suited for real-time operation. There is no need for a
special physical layer, therefore, electrical and optical

transmission mediums are supported by FlexRay.
Furthermore, FlexRay is suited for several network
topologies such as bus, star, cascaded star and hybrid
network topologies.

FlexRay Communication
CAN supports CSMA (Carrier Sense Multiple Access),
which means that every device starts a transmission as
soon as no other device is sending. Since each device
has different priorities, collisions on the bus will not
occur. On the other hand, this prevents exact predic-
tion of which time the sent data will be received (non-
deterministic).

In contrast to that, FlexRay supports TDMA (Time
Division Multiple Access). Each device has a fixed time
window (time slot), during which the device has exclu-
sive access to the bus. These time slots are repeated
in a fixed pattern.

Using TDMA, it is possible to exactly predict the time
when the data will be received by the bus (determinis-
tic bus access). To properly handle that kind of com-
munication, however, all nodes need to have the same
global time.

Figure 3 shows an example of a typical data transmis-
sion using FlexRay with four components. Two out of
the four (device A and device C) have a redundant sec-
ond channel.

The second channel can be used for redundant trans-
mission (C1 in figure 3) or for the transmission of two
messages at the same time (A1 and A2 in Figure 3).
The devices B and D are only connected to channel 1,
so that the corresponding time slot on channel 2 elaps-
es without being used.

If a device has exclusive access to the bus, but has no
data to be sent, the designated time elapses without
being used. In this case, the bandwidth is not used
efficiently. If a device, however, has to send more data
than fits into one time slot, the device needs to wait
until it has exclusive access to the bus again to send
the rest of its data. To avoid this, FlexRay splits the
communication cycle into a static and dynamic part.
The fixed time slots are designated in the static part,
whereas the dynamic part has additional time slots, the
so-called mini-slots, during which the exclusive bus
access is limited for a short time. Only if a bus access
occurs within this time, the mini-slots will be enlarged
as necessary. This method helps to increase the effi-
ciency of the bandwidth.

The message structure is shown in Figure 4 and a
short description is given in Table 5.

LIN - Local Interconnect Network
In contrast to FlexRay, which serves more sophisticat-
ed application needs than CAN, LIN has been devel-
oped for less complex networks, where CAN would be

www.atmel.com page 30

Asynchronous Data
If asynchronous data needs to be sent in addition to the
synchronous, the boundary descriptor has to be set as
described in table 2 to ensure that the beginning of the
asynchronous data can be determined exactly.
Asynchronous data transmission is mainly used for larg-
er-sized blocks and if larger band-width is required.
The number of asynchronous data bytes on an asyn-
chronous channel is limited to 48 bytes when using the
48 byte data link layer. when using an alternative data
link layer, the maximum packet length is 1014 bytes.

The structure of an asynchronous area in a frame is
given in Table 3.

Control Data
The control data is mainly used for the communication
between the separate nodes of the bus. Data access is

Figure 2: MOST Communication

1 block consists of 16 Frames

1 Frame consists of 512 Bits

synchronous or
asynchronous data

0 ... 480 bits

control
frame
16 bits

Frame
control
7 bits

Parity

1 bits

Boundary
Descriptor

4 bits

Preamble

4 bits

NAME BITS DESCRIPTION

Preamble 4 Synchronizes the MOST core and its internal functions to the bit stream

Boundary 4 If synchronous as well as asynchronous data is transmitted in one
descriptor frame, the boundary descriptor marks the number of 4 byte blocks of

data used for synchronous data in the data block. For example, if 40
bytes of synchronous data and 20 bytes of asynchronous data are
transmitted, the boundary descriptor will be set to 10 by the timing
master

Synchronous or 0...480 See chapter “Synchronous Data” and chapter “Asynchronous Data”
Asynchronous data

Control frame 16 See chapter “Control Data”

Frame control 7 Frame control and status bits

Parity 1 Error detection

Table 2: MOST Frame Architecture

NAME BITS DESCRIPTION

Arbitration 8 Avoids collisions on the bus

Target 16 When transmitting asynchronous data, the target address has to be transmit-
address ted, too.

Length 24 Length in four byte blocks

Source 16 When transmitting asynchronous data, the source address has to be transmit-
address ted, too.

Data area 0...384 The actual data

CRC 32 Cyclic redundancy check

Table 3: Message Format in the Asynchronous Area

www.atmel.com page 31

too expensive. The LIN specification was
defined by a consortium with the initial
members BMW, DaimlerChrysler, Audi®,
Volvo, Motorola, VW® and Volcano. Atmel
joined this consortium in 2001. After hav-
ing gathered additional experience, the LIN
consortium released the new LIN 2.0 spec-
ification in September 2003.

Typical LIN bus applications include the
connection of intelligent actuators or sen-
sors, such as small motors, temperature or
rain sensors, sun roof or heating control.
For these applications, high transmission
data rates or complex fault management
are not necessary.

This is why LIN supports only data trans-
mission of up to 19.6 kBit/s. For this data
rate, a cost-effective 12 V single wire is
sufficient as transmission medium.

LIN is based on an SCI (UART) 8-bit inter-
face and supports the Single-
Master/Multiple Slave concept. UART inter-
faces are available in almost every micro-

controller or ASIC,

and can be implemented in almost any software or
firmware. due to this, there is no need for the use of
other expensive external components. A typical LIN
cluster with one master node and three slave nodes is
illustrated in Figure 5.

It is obvious that the master node performs both a mas-
ter task as well as a slave task.

Due to the simple concept, no node within the LIN net-
work, except the master, will be influenced by adding or
removing another slave. In this case, the only neces-
sary changes concern the master node.

A special feature of LIN is the synchronization mecha-
nism which adjusts the clock rate of the slave nodes to
the master without an external crystal or resonator.

Thanks to the simplicity of the UART communication,
the single-wire transmission and the simplicity of the
clock rate adjustment, a LIN bus system is very cost-
effective.

LIN Communication
The structure of a LIN Bus Message Frame is illustrat-
ed in Figure 6.

Every LIN Bus Message Frame starts with the header
sent by the master. This header consists of a Break
byte field, the Synch byte field and the protected iden-
tifier. Before the slaves send the requested response,
there is a short stop, the so-called response space. the
interframe space at the end of each frame pulls the LIN
bus to high level until the break byte of the next frame
will force the bus line to low level again.

NAME BITS DESCRIPTION

Arbitration 24 Avoids collisions on the bus

Target 16 When interchanging control data between separate nodes, it is important to
address specify the target node.

Source 16 When interchanging control data between separate nodes, it is necessary to
address identify the source node.

Message 8 There are two different message types. Normal messages include single cast,
type group cast and broadcast, system messages include resource allocate,

resource de-allocate and remote getsource.

Data area 0...136 The actual data

CRC 16 Cyclic redundancy check

Transmission 16 Indicates the current status of a transmission
status

Reserved 16 Reserved for further protocol use

Table 4: Message Format in the Control Frame

Figure 3: Example of a Typical Data Transmission with Four Bus Devices Using FlexRay

Figure 4: Message Architecture in FlexRay

Header segment Payload segment (0 ... 254 bytes)

Cycle
count

6 bits

Header segment

FlexRay Frame (5 + (0 ... 254) + 3 bytes)

Figure 5: Typical LIN Bus Architecture

Figure 6: LIN Bus Message Frame

Frame slot
Frame

Header Response

Synch

Break DATA 1 DATA 2 DATA N Checksum Interframe
space

BreakResponse
space

Protected
identifier

Each slave is in alert state as soon as it detects the
Break byte field. The following Synch byte field syn-
chronizes the slaves with the master for the following
transmission. The Synch sequence is always a byte
field with the data value Ox55, so all slave noes within
the network can easily synchronize to the clock of the
master by detecting the edges of this signal.

Apart from the Break byte field, which is indicated by a
low level on the LIN bus for at least 13-bit times fol-
lowed by a high level for at least one bit time, all other
byte fields n a LIN message are constructed as shown
in Figure 7.

At the beginning, there is a low level start bit which is
known by almost any UART-based communication,
followed by eight data bits with the LSB first. The byte
field is completed with a stop bit.

The protected identifier consists of six identifier bits
and two parity bits, so there are 64 different identifiers
within one LIN network.

The structure of the protected identifier byte field is
shown in Figure 8. According to the protected identi-
fier and after the response space, a slave begins to
send the requested response, or it expects more data.

this response may contain up to
eight data byte fields plus one
checksum byte field.

With the release of the LIN2.0
specification, a new checksum
calculation has been introduced.
To enable compatibility to the still
used LIN1.3 specification, the
previous type of checksum cal-
culation is also supported by
LIN2.0. The new checksum is
called enhanced checksum and
is calculated by the inverted eight
bit sum along with the carry bit
over all data bytes plus the pro-
tected identifier. The LIN1.3
checksum is called classic
checksum and is calculated as
described above, but without the
protected identifier.

www.atmel.com page 32

NAME BITS DESCRIPTION

A = Reserved bit 1 This bit is reserved for future protocol use and may not be used by the application.

B = Payload preamble 1 This bit is used to indicate whether or not an optional vector is contained within the payload segment. This vec-
indicator tor is a network management vector if the frame is transmitted in the static segment or a message ID if the frame

transmitted in the dynamic segment.

C = Null frame indicator 1 If this bit is set, the message included contains no useable date in the payload segment.

D = Sync frame indicator 1 If this bit is set, the frame is used to synchronize all receiving nodes.

E = Startup frame 1 This bit is used to indicate whether or not a frame is a start-up frame.
indicator

Frame ID 11 This ID defines a certain slot in which the frame should be transmitted.

Payload length 7 These bits determine the number of data bytes transmitted in the payload frame by setting the payload length bits
to the number of the data bytes divided by two.

Header CRC 11 The Sync frame indicator, the start-up frame indicator, the frame ID and the payload length contribute to the
6 Header CRC.

Cycle count These bits contain the number of the current communication cycles.

Payload segment 2032 In that segment the data will be transmitted. It can contain up to 254 bytes (0...127 two-byte words).

CRC 24 This cyclic redundancy check uses the complete header segment as well as the complete payload segment.

Table 5: Description of Message Architecture in FlexRay

Figure 7: Structure of a Byte Field in a LIN Message Frame

Start
bit

Bit 0
LSB

Bit 7
MSB

Stop
bit

Byte field

Figure 8: Structure of the Protected Identifier

Start
bit

Stop
bitIDO ID1 ID2 ID3 ID4 PO P1

