General Motors Energy Diversity & Fuel Economy Tour

Learn how General Motors is helping to improve fuel economy, reduce emissions, and reduce the dependence on petroleum. Featuring the 2007 Saturn Vue Green Line hybrid & the 2007 Chevy Tahoe with FlexFuel, and introduction by Vehicle Dynamics course instructor Greg Schultz.

Time: February 9, 2007, 3pm
Location: 1110 Jeong H. Kim Engineering Building
Lecture Hall & Outdoor Plaza

Lecturer Roger Clark
Senior Manager of Energy and Drive Quality
General Motors Corporation:

Roger Clark is the senior manager of Energy and Drive Quality for General Motors. Clark joined GM in 1984 at the Packard Electric Division and was awarded a GM Fellowship to attend Purdue University in 1986. He returned to GM as a development engineer for Engine Management Systems and Controls in 1987, at the Milford Proving Grounds. He then moved to the GM Chevrolet Pontiac Canada Group in 1989, at the Systems Engineering Center, as a vehicle system modeling engineer. In 1998, Clark moved to GM's Truck Group as the full-size truck energy integration engineer before moving to lead the Energy & Mass Integration Group. Clark was born in Chicago, Ill., in 1962. He received a B.S. in Mechanical Engineering from Illinois Institute of Technology in 1984 and a M.S. in Mechanical Engineering from Purdue University in 1987. He also received the GM Boss Kettering Award for Innovations in Electronic Throttle Control in 1997.

Abstract:

According to the Department of Energy, from 2003 to 2030, worldwide energy demand will grow an average of two percent a year, meaning that the world will need about 70 percent more energy in 2030 than it did only four years ago. It is highly unlikely that oil alone will be able to supply all of the world's rapidly growing automotive energy requirements, thus creating a need for energy diversity.

GM is developing alternative sources of propulsion, based on a diverse supply of energy, in order to meet growing demand for its products around the world. The company has a comprehensive technological plan that includes: continuing to improve the efficiency of the internal combustion engine; dramatically increasing efforts to displace traditional petroleum-based fuels, by building a greater number of vehicles that run on alternatives, such as E-85 ethanol; continuing to build a broad array of hybrids; significantly expanding and accelerating its commitment to the development of electrically driven vehicles; and a long-term goal of hydrogen fuel cell vehicles.

Sponsored by the Department of Mechanical Engineering and the UMD student chapter of the Society of Automotive Engineers (SAE). For more information, contact Jim Barrett at jcb@umd.edu.